# Form 3

### Mid-Year Examination 2015-2016

#### **Mathematics**

## Paper II

#### INSTRUCTIONS

- 1. Write your examination number in the spaces provided on this cover page.
- 2. Write down all required information on the Multiple Choice Answer Sheet.
- 3. Answer all questions. Answer should be marked on the Multiple Choice Answer Sheet.
- 4. Each question carries 2 marks. The total mark is 90.
- 5. You should mark only ONE answer for each multiple choice question. If you mark more than one answer, you will receive No marks for that question.
- 6. No marks will be deducted for wrong answer.
- 7. The diagrams in this paper are not necessarily drawn to scale.

| 1.              | Fact                                                                                                                | torize $x^2 - x - y + 2xy$                                                                                      | $y + y^2$          |                                                  |                  |                                                                   |        |                                     |
|-----------------|---------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|--------------------|--------------------------------------------------|------------------|-------------------------------------------------------------------|--------|-------------------------------------|
|                 | A.                                                                                                                  | (x+y)(x+y+1)                                                                                                    |                    |                                                  | В.               | (x+y)(x+y-1)                                                      |        |                                     |
|                 | C.                                                                                                                  | (x-y)(x+y-1)                                                                                                    |                    |                                                  | D.               | Cannot be factorized                                              | d.     |                                     |
| 2.              | $(-a^{2})$                                                                                                          | $(a^{2}b^{3}c)^{4} \div (a^{2}b^{2}c) =$                                                                        |                    |                                                  |                  |                                                                   |        |                                     |
|                 | A.                                                                                                                  | $a^6 b^{10} c^3$                                                                                                | B.                 | $-a^6 b^{10} c^3$                                | C.               | $a^4 b^5 c^3$                                                     | D.     | $-a^4b^5c^3$                        |
| 3.              | <i>x</i> an                                                                                                         | d y are positive integer<br>I. $m^{x_y} = m^x \div m^y$<br>II. $m^{x+y} = m^x + m^y$<br>III. $(m^x)^y = m^{xy}$ | ers and            | d $m \neq 0$ . Which of the                      | e follov         | wing are correct?                                                 |        |                                     |
|                 | A.                                                                                                                  | I and II only                                                                                                   | B.                 | I and III only                                   | C.               | II and III only                                                   | D.     | I, II and III                       |
| 4.              | If 3 <sup>n</sup>                                                                                                   | $n^{2} = 5$ and $9^{n} = 10$ , th                                                                               | en the             | e value of $3^{m+2n}$ is                         |                  |                                                                   |        |                                     |
|                 | A.                                                                                                                  | 55.                                                                                                             | B.                 | 150.                                             | C.               | 300.                                                              | D.     | 450.                                |
| 5.              | It is                                                                                                               | given that $x + x^{-1} = \sqrt{2}$                                                                              | $\frac{1}{2}$ + 1, | $x^2 + x^{-2} =$                                 |                  |                                                                   |        |                                     |
|                 | А.                                                                                                                  | 1.                                                                                                              | B.                 | 3.                                               | C.               | $2\sqrt{2} + 1.$                                                  | D.     | $(\sqrt{2}+1)^2.$                   |
| 6.              | $\frac{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt$ | $\frac{\overline{10}}{6} \times \frac{24}{\sqrt{5}} \div \frac{25}{\sqrt{2}} =$                                 |                    |                                                  |                  |                                                                   |        |                                     |
|                 | А.                                                                                                                  | 100                                                                                                             | B.                 | $\frac{2\sqrt{2}}{5}$                            | C.               | $\frac{5\sqrt{2}}{12}$                                            | D.     | $\frac{\sqrt{10}}{60}$              |
| 7.              | The<br>fill a                                                                                                       | inner diameter of a w                                                                                           | rater p<br>nk of b | ipe is 20 cm. If the sp<br>pase radius 0.8 m and | beed of<br>heigh | the water flow is 1 m<br>0.5 m with water?                        | /s, ho | w long does it take to              |
|                 | A.                                                                                                                  | 3.2 s                                                                                                           | B.                 | 4 s                                              | C.               | 16 s                                                              | D.     | 32 s                                |
| 8.              | Con                                                                                                                 | vert the binary number                                                                                          | er 110             | 100011010 <sub>(2)</sub> to a he                 | xadeci           | mal number.                                                       |        |                                     |
|                 | A.                                                                                                                  | 89A <sub>(16)</sub>                                                                                             | B.                 | 91A <sub>(16)</sub>                              | C.               | C9A <sub>(16)</sub>                                               | D.     | D1A <sub>(16)</sub>                 |
| 9.              | The<br>poin                                                                                                         | point A(2 , −11) is tra<br>at B(−2 , 5). Find θ.                                                                | anslate            | ed 6 units upward and                            | d then           | rotated clockwise abo                                             | ut the | origin through $\theta$ to          |
|                 | A.                                                                                                                  | 90°                                                                                                             | B.                 | 180°                                             | C.               | 270°                                                              | D.     | 360°                                |
| 10.             | If {                                                                                                                | $\begin{cases} x = 1 \\ y = -1 \end{cases}$ is the solution                                                     | n of th            | e simultaneous equa                              | tions            | $\begin{cases} ax + 2y = b \\ 4x - by = 2a - 1 \end{cases}$ , the | en the | values of <i>a</i> and <i>b</i> are |
|                 | A.                                                                                                                  | a = -3, b = -1.                                                                                                 | B.                 | a = -3, b = 1.                                   | C.               | a = -1, b = 3.                                                    | D.     | a = 3, b = 1.                       |
| Mid Y<br>F.3 Ma | ear Exa<br>athema                                                                                                   | amination 2015 – 2016<br>tics Paper II                                                                          |                    | Page 2/8                                         |                  |                                                                   | Go     | on to the next page                 |

https://www.study-together.com/edu/

| 11. | The        | relative positions of <i>n</i>                                              | ı and         | <i>n</i> on the number line                 | e are sh  | nown below.                           |          |                        |
|-----|------------|-----------------------------------------------------------------------------|---------------|---------------------------------------------|-----------|---------------------------------------|----------|------------------------|
|     |            | n = 0                                                                       |               | m                                           | -         |                                       |          |                        |
|     | The        | value of $(n + m)(n - m)$                                                   | m) is         |                                             |           |                                       |          |                        |
|     | А.         | greater than 0.                                                             | B.            | smaller than 0.                             | C.        | equal to 0.                           | D.       | undetermined.          |
| 12. | If m       | is a negative number,                                                       | whic          | ch of the following is                      | s / are c | orrect?                               |          |                        |
|     |            | $\mathbf{I.}  \frac{6}{m} > \frac{4}{m}$                                    |               |                                             |           |                                       |          |                        |
|     |            | II. Error!< Error                                                           | r!            |                                             |           |                                       |          |                        |
|     |            | III. $\frac{-6}{m} > \frac{-4}{m}$                                          |               |                                             |           |                                       |          |                        |
|     | А.         | I only                                                                      | В.            | III only                                    | C.        | I and III only                        | D.       | I, II and III          |
| 13. | If c       | < 0 and $a > b$ , then                                                      |               |                                             |           |                                       |          |                        |
|     | A.         | ac > bc.                                                                    | B.            | ac < bc.                                    | C.        | <i>ac</i> < <i>b</i> .                | D.       | a < bc.                |
| 14. | Whi        | ich of the following is/<br>I. $-2$<br>II. 0<br>III. $\frac{2}{3}$<br>IV. 2 | 'are tl       | he solution(s) of the                       | equatio   | on $(x+2)(x-2) = 2x(x-2)$             | x + 2)   | ?                      |
|     | A.         | I only                                                                      | B.            | I and IV only                               | C.        | II and III only                       | D.       | II and IV only         |
| 15. | The the r  | perimeter of a rectang<br>rectangle.                                        | le is         | 14 cm and the diago                         | nal is 1  | cm longer than one c                  | of its s | ides. Find the area of |
|     | А.         | $10 \text{ cm}^2$                                                           | В.            | $12 \text{ cm}^2$                           | C.        | $14 \text{ cm}^2$                     | D.       | $48 \text{ cm}^2$      |
| 16. | The<br>A   | figure shows $\Delta PQR$ .                                                 | Whic<br>DR is | h of the following is greater than $2(PR +$ | correct   | t?                                    |          | P                      |
|     | <b>B</b> . | The perimeter of $\Delta PQ$                                                | OR is         | smaller than 2PR.                           | QIC).     |                                       | /        | /                      |
|     | C.         | The perimeter of $\Delta PC$                                                | R is          | smaller than 2QR.                           |           |                                       |          |                        |
|     | D.         | The perimeter of $\Delta PQ$                                                | )R is         | smaller than 2(PQ +                         | QR).      | a                                     |          |                        |
| 17. | Но         | w many non-negative                                                         | integ         | ral solutions does the                      | e inequ   | hality $\frac{15 - 2y}{4} \ge 0$ have | ve?      |                        |
|     | A.         | 6                                                                           | B.            | 7                                           | C.        | 8                                     | D.       | 9                      |
|     |            |                                                                             |               |                                             |           |                                       |          | $\sim$                 |

Go on to the next page

- 18. If a number is increased by 25% and then decreased by 10%, it becomes 99. Find the number.
   A. 72
   B. 82.5
   C. 88
   D. 120
- 19. Tommy deposits \$5 000 in a bank. If the interest is compounded quarterly at an annual interest rate of 8%, what will be the amount after 1.5 year? (Give the answer correct to the nearest dollar.)
  - A. \$5 600B. \$5 612C. \$5 624D. \$5 631
- 20. Refer to the following table:

| Progressive rates in the year | · 2014/15 |
|-------------------------------|-----------|
| Net chargeable income         | Tax rate  |
| On the first \$30 000         | 2%        |
| On the next \$30 000          | 8%        |
| On the next \$30 000          | 14%       |
| Remainder                     | 20%       |

 The net chargeable income of William in 2014/15 was \$68 000. Find the salaries tax paid by him.

 A. \$3 000
 B. \$4 120
 C. \$5 920
 D. \$9 520

21. The annual interest rate of a bank is 5%. Jenny puts two deposits of the same amount in the bank. If the compound interest of one deposit compounded annually for 2 years is \$10 more than the simple interest of the other deposit for 2 years, how much is each deposit?
A. \$600
B. \$1 200
C. \$4 000
D. \$10 000

22. In Brazil, the cost of coffee bean produced in city A is \$0.22/kg and that of coffee bean produced in city B is \$0.31/kg. If the two kinds of coffee beans are mixed to produce a new brand of coffee powder with the expected cost of \$0.29/kg, in what ratio should the two kinds of coffee beans be mixed together?
A. 2:5
B. 2:7
C. 2:9
D. 3:4

23. In the figure, the solid is composed of cube ABCDEFGH and regular quadrilateral pyramid VABCD. R, S, T and U are the mid-points of AD, DC, GH and GF respectively. ∠VRU is the angle between plane VAD and

- **A.** plane BCGF. **B.** plane RUGS.
- C. plane VFG. D. plane ADGF.
- 24. Which of the following is not the net of a regular octahedron?



https://www.study-together.com/edu/

R

D

B

E

ΙT

Η

- 25. Suppose letters E, F and V represent the number of edges, faces and vertices of a polyhedron respectively. Which of the following must NOT give a polyhedron?
  - A. E = 36, F = 20, V = 18.B. E = 44 F = 26, V = 20.C. E = 18, F = 38, V = 22.D. E = 56, F = 32, V = 26.

26. Simon pours a box of drink into a cup of 450 mL. He finds that the empty space in the cup is about <sup>1</sup>/<sub>6</sub> of the capacity of the cup. If he pours the box of drink into a bottle of 500 mL, the empty space in the bottle occupies
A. <sup>1</sup>/<sub>10</sub> the capacity of the bottle.
B. <sup>1</sup>/<sub>8</sub> the capacity of the bottle.
C. <sup>1</sup>/<sub>4</sub> the capacity of the bottle.
D. <sup>1</sup>/<sub>2</sub> the capacity of the bottle.

27. Find the relationship of the magnitude between the mean, median and mode of 10, 20, 20, 70, 40, 55 and 30.

- A. mode = median = meanB. mode < median < mean</th>
- C. mean < median < mode D. median < mean
- 28. The bar chart shows the sales of two brands of computers.Which of the following must be true?
  - I. The sales of A is less than the sales of B.

II. The sales of B is double that of the sales of A.

III. The sales of B is 20% more than the sales of A.

- A.I and II onlyB.I and III only
- C. II and III only D. I, II and III





29. The figure below shows the cumulative frequency polygon of

living areas (in m<sup>2</sup>) of 30 families.

Find the median of the living areas.

- **A.**  $40 \text{ m}^2$
- **B.** 49.5 m<sup>2</sup>
- **C.** 59.5 m<sup>2</sup>
- **D.** "49.5 m<sup>2</sup> 69.5 m<sup>2</sup>"

30. Consider the data set:

10, 11, *x*, 13, *y*, 17

If the mean is 13 and the median is 12.5, find x and y, where  $x \le y$ .

**A.** x = 11, y = 14. **B.** x = 11, y = 16. **C.** x = 12, y = 15. **D.** x = 12, y = 16.

- 31. If the mean of x, y and z is 16, then the mean of x 5, y + 2 and z + 4 is
  - **A.** 16. **B.**  $16\frac{1}{3}$ . **C.**  $17\frac{1}{3}$ . **D.** 18.

32. In the figure, DE is parallel to BC and passes through the centroid G of  $\triangle$ ABC. If DE = 4 cm, then BC is equal to

- **A.** 6 cm.
- **B.** 6.5 cm.
- C. 8 cm.
- **D.** 9 cm.

33. AB and AC are the equal sides of the isosceles triangle ABC, and AB = 10 cm. The

perpendicular bisector of AB meets AC at D, and the perimeter of  $\Delta$ BCD is 17 cm, then BC =

- **A.** 6 cm.
- **B.** 7 cm.
- C. 8 cm.
- **D.** 10 cm.
- 34. If the lengths of two sides of an isosceles triangle are 5 cm and 10 cm respectively, then the length of the remaining side is

| <b>A</b> . 1 cm. <b>B</b> . 5 cm. <b>C</b> . 10 cm. <b>D</b> . 15 |
|-------------------------------------------------------------------|
|-------------------------------------------------------------------|

- 35. In the figure, ABCD is a square and AEFG is a rectangle. If
  - BJ = GD and AB = 2 cm, find the area of AEFG.
  - A.  $2\sqrt{2}$  cm<sup>2</sup>
  - **B.**  $4 \text{ cm}^2$
  - C.  $8 \text{ cm}^2$
  - **D.** Cannot be determined



Page 6/8









- 36. In  $\triangle ABC$ , AB = AC and  $\angle A = 40^{\circ}$ . Rotating  $\triangle ABC$  about B clockwise, another triangle DBE is obtained, where DCE is a straight line (as shown in the figure). How many isosceles triangles are there in the figure?
  - **A.** 4
  - **B.** 5
  - **C.** 6
  - **D.** 7
- 37. In ΔABC, if D, E and F are the mid-points BC, CA and AB respectively, then the perimeter of the quadrilateral AFDE is
  - **A.** AD + BC. **B.** AB + AC. **C.**  $\frac{1}{2}(AB + AC + BC)$ . **D.** BC + AC.
- 38. In the figure, ABC is a straight line,  $\angle ADC = 90^{\circ}$ . If DB is an altitude of  $\triangle ACD$ , then
  - A.  $AD \times DC = AC^2$ .
  - **B.**  $AB \times BD = CD^2$ .
  - C.  $AB \times BC = BD^2$ .
  - **D.**  $AD \times BD = BC^{2}$ .
- 39. In the figure, O is the incentre of  $\triangle ABC$ . Find  $\angle AOC$ .
  - **A.** 107.5°
  - **B.** 108°
  - **C.** 109.5°
  - **D.** 110°



B

D

В

Δ



How many different triangles can be formed?A. 3B. 4C. 5D. 6

40. In the figure, the sides of a triangle are x, 3x and 15. Suppose x is an integer.

41. In the figure, ABCD is a parallelogram and PBSR is a square. If  $\angle ADC = 35^{\circ}$ , then  $\angle PTQ =$ 

- **A.** 55°.
- **B.** 80°.
- **C.** 90°.
- **D.** 125°.

Mid Year Examination 2015 – 2016 F.3 Mathematics Paper II



- - $\frac{2a}{\sqrt{3}}$

Mid Year Examination 2015 - 2016 F.3 Mathematics Paper II

~~End of Paper~~~

42. In the figure, ABCD is a parallelogram with AB = 6 cm and BC = 9 cm.

If DE = 4 cm, DF = 6 cm and  $\angle DFE = 40^{\circ}$ , find  $\angle ACB$ .

- 20° A.
- B. 30°
- C. 40°
- **D.** 50°

43. In the figure, ABCD is a square and  $\triangle ADE$  is an equilateral triangle. Find  $\angle ACE$ .

- **A.** 15°
- **B.** 20°
- **C.** 25°
- **D.** 30°
- 44. In the figure, D is the mid-point of AB, BF : FC = 2 : 1 and DE // BC. If the area of  $\triangle ADE = 18 \text{ cm}^2$ , find the area of the quadrilateral BDEF.
  - **A.**  $27 \text{ cm}^2$
  - **B.**  $36 \text{ cm}^2$
  - C.  $42 \text{ cm}^2$
  - **D.**  $45 \text{ cm}^2$
- 45. In the figure, ABCD is a square of side 2a. M and N are the mid-points of AB and CD respectively. h is the height of the parallelogram MBND. Find h.
  - $\frac{a}{2}$ A.  $\frac{2a}{\sqrt{5}}$ B.
  - $\frac{5a}{2\sqrt{5}}$ C.
  - D.







