Form 3

Mid-year Examination 2013-2014

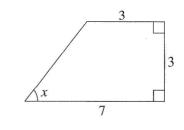
Mathematics

Paper II

INSTRUCTIONS

- 1. Write your examination number in the space provided on this cover page.
- 2. Write down all required information on the Multiple Choice Answer Sheet.
- 3. Answer all questions. Answer should be marked on the Multiple Choice Answer Sheet.
- 4. Each question carries 2 marks. The total mark is 90.
- 5. You should mark only ONE answer for each multiple choice question. If you mark more than one answer, you will receive No mark for that question.
- 6. No mark will be deducted for wrong answer.
- 7. The diagrams in this paper are not necessarily drawn to scale.
- 8. This paper should be answered in English.

- 1. $a^{2} + a(a + a) =$ A. $3a^{2}$. B. $3a^{3}$. C. a^{4} . D. a^{5} .
- 2. How many significant figures does 0.0140 have?A. 2B. 3C. 4D. 5
- 3. $\frac{5^{3n}}{25^{n-1}} =$ A. 5^{n-1} . B. 5^{n+1} . C. 5^{n+2} . D. 5^{5n-2} .


4. Amy sold a vase to Brian at a profit of 15%. Later, Brian sold the vase to Carmen for \$6400 and gained \$420. What was the cost price of the vase for Amy?
A. \$5200 B. \$5970 C. \$6877 D. \$7780

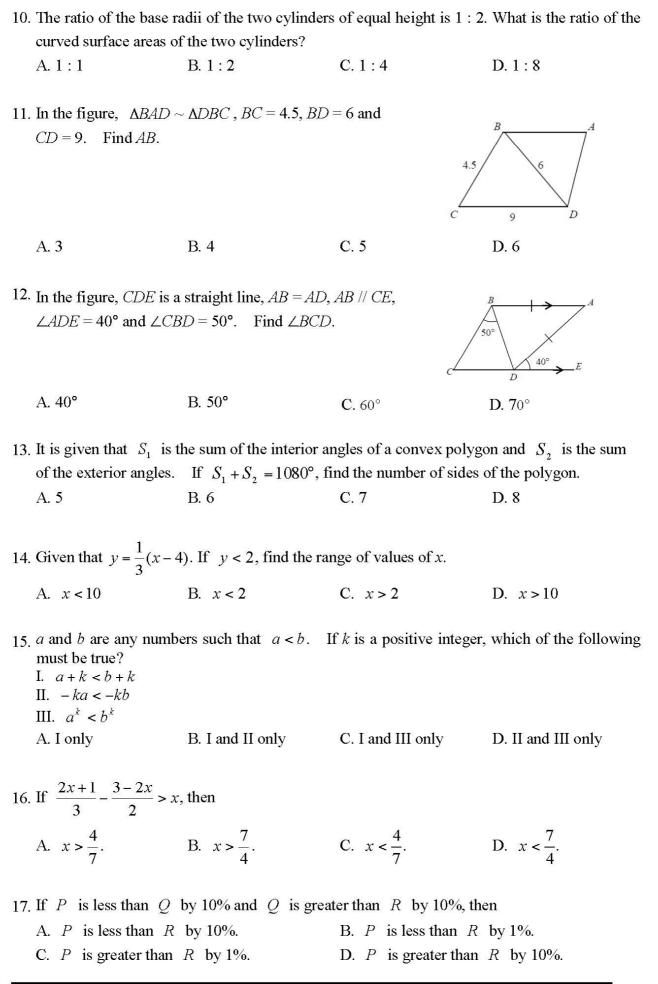
5. If the point A(-3, 4) is rotated anti-clockwise about the origin through 180° to the point B, then the coordinates of B are
A. (3, -4). B. (-4, 3). C. (-3, -4). D. (4, 3).

6. In the figure, $\cos x =$

A.
$$\frac{3}{7}$$
.
 B. $\frac{5}{7}$.

 C. $\frac{3}{5}$.
 D. $\frac{4}{5}$.

7. The frequency distribution table below shows the time (in hours) spent by a group of teenagers in using computers in a week. If $\frac{2}{9}$ of them spent 20 h - 24 h in using computers

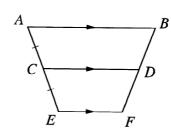

in a week, find the value of *n*.

Time (h)	5 - 9	10 - 14	15 - 19	20 - 24	25 - 29	30 - 34
Frequency	2	3	5	10	п	n – 3
A. 14	В.	15	C. 16		D. 17	

8. If
$$(5x + P)^2 = 25x^2 - 30x + Q$$
, then $Q =$

A. 3. B. 9. C. 12. D. 36.

9. If 2x - 3y = x + 3 = 3x - y, then x =A. 8. B. $\frac{24}{5}$. C. $\frac{6}{5}$. D. -2.


18. The cost of a shirt is \$30, where 40% is for raw materials and 60% is for wages. If the cost for raw materials is increased by 40% and that of wages is decreased by 40%, the percentage change of the cost of the shirt is				
A8%.	B5%.	C. 0%.	D. 5%.	
19. Daniel borrowed \$10 interest rate is 4% p.a A. \$404	000 from a bank and th ., find, correct to the nea B. \$816	-		
20. Harry owns a flat with rateable value of \$80 000 a year. The tax rate for rates is 5% per annum. If the rates for the first half of the year are exempted, what are the rates that he should pay for that year?				
A. \$800 000	B. \$8 000	C. \$4 000	D. \$2 000	
21. $110_{10} - 110_2 + 110_{16}$ I. 101111000_2 II. 101111001_2 III. 376_{10} IV. 178_{16}	=,			
A. I only	B. I and II only	C. II and III only	D. I, III and IV only	
22. If the sides of a triangle are 5, 9 and x , find the number of possible integral values of x .				
A. 7	B. 9	C. 11	D. 13	
23. A number is first decreased by $k\%$ and then increased by $k\%$. If the final number is $\frac{5}{9}$ of the original number, find the value of k .				
A. $\frac{4}{9}$	B. $\frac{2}{3}$	C. $33\frac{1}{3}$	D. $66\frac{2}{3}$	
24. Which of the following conditions can be used to determine that $ABCD$ is a parallelogram?A. $\angle A = \angle B$, $\angle C = \angle D$ B. $AB = AD$, $BC = CD$ C. $AD // BC$, $AD = BC$ D. $AB // DC$, $\angle B = \angle C$				
25. In the figure, <i>PQRS</i> is a parallelogram. <i>PR</i> and <i>SQ</i> intersect at <i>O</i> . How many pairs of congruent triangles are there? $P \xrightarrow{S}_{Q} R$				
A. 2	B. 3	C. 4	D. 5	

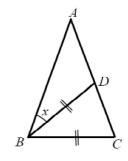

- 4 -

Mid-year Examination 13 – 14_Paper II

26. In the figure, AB // CD // EF and AC = CE. Which of the following must be true?

I.
$$\frac{BD}{DF} = 1$$

II. $\frac{EF}{CD} = \frac{1}{2}$
III. $CD = \frac{AB + EF}{2}$
A. I and II only



D. I, II and III

27. In the figure, *ADC* is a straight line and *BD* is the angle bisector of $\angle ABC$. If AB = AC and BD = BC, then x =

B. I and III only

С

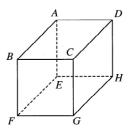
A. 28°.

28. In the figure, *D*, *E* and *F* are the mid-points of the *AB*, *BC* and *CA* of $\triangle ABC$ respectively. If the area of $\triangle DEF = 10 \text{ cm}^2$, then the area of $\triangle ABC$ is

B. 32°.

A. 20 cm^2 .

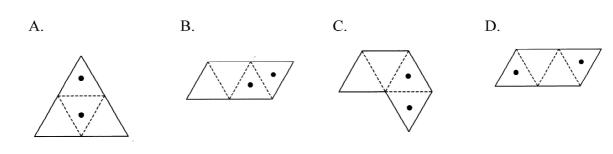
B. 30 cm^2 .


C. 40 cm^2 .

C. 36°.

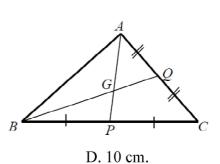
D. 40°.

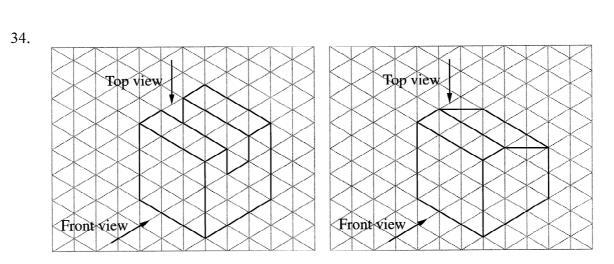
29. The figure shows a cube *ABCDEFGH*. Name the angle that the line *AG* makes with the plance *CDHG*.

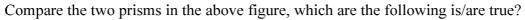

B. $\angle AGE$

C. $\angle DAG$

D. ∠AGD

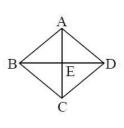

30. Solve the compound inequality $\begin{cases} 5(x-2) \le -15\\ 2(6-x) \ge 8 \end{cases}$. A. $x \le -1$ B. $x \le 2$ C. $2 \le x \le -1$ D. No solution


- 31. Solve (x+2) = (x-3)(x+2). A. x = 3 B. x = 4 C. x = -2 or x = 3 D. x = -2 or x = 4
- 32. The figure shows a regular tetrahedron in which dots are drawn on two of its faces. Which of the following is not its possible net?


33. In the figure, if AQ = CQ, BP = CP and AP = 12 cm, then AG =

B. 6 cm.

C. 8 cm.


I. They have the same front view.

A. 4 cm.

- II. They have the same top view.
- III. They have the same volume.
- A. I only B. I and III only

C. II and III only

- 35. How many planes of reflection are there in a regular octahedron?
 - A. 5 B. 6 C. 8 D. 9
- 36. In the figure, *ABCD* is a rhombus. *AC* and *BD* intersect at *E*. If AD = (x - 2) cm, AC = (2x - 12) cm and BD = (2x - 8) cm, then the perimeter of rhombus *ABCD* is

- A. 30 cm. B. 32 cm. C. 36 cm. D. 40 cm.
- 37. If the mode of the seven numbers 8, 6, 1, 2, 6, *a* and *b* is 8, then the median of the seven numbers is
 - A. 3. B. 6. C. 7. D. 8.
- 38. Susan and Jane applied for the same post. Their scores in different categories and the weight assigned to each category are as follows:

-	Education	Work experience	Typing	Speaking
Susan	82	65	53	72
Jane	85	x	76	68
Weight	4	3	2	1
If they got the sa	me weighted mear	, find the value of x .		
A. 43	B. 45	C. 46	D	0. 47

39. The mean of a group of n numbers is m. If the numbers 2, 3 and 4 are removed from the
group, the mean of the remaining n-3 numbers remains unchanged. Find the value of m.A. 1B. 2C. 3D. n-3

40. Which of the following is not true for a cube?

	Order of rotational symmetry	Corresponding number of axes of
		rotational symmetry
А.	2	6
В.	3	4
C.	4	3
D.	6	2

41. It is known that the mean, median and mode of 9 data are 28, 26 and 18 respectively. After deleting the datum 32, which of the following must be true?

C. I and III only

D. II and III only

D

B. I and II only

- I. The mean will decrease.
- II. The median will decrease.
- III. The mode will decrease.

A. I only

- 42. The following figure shows the net of a polyhedron. All the faces are regular pentagons. The number of vertices of the polyhedron is C. 20. A. 12. B. 18. D. 30. 43. In the figure, AC is a diagonal of rectangle ABCD and A $DE \perp AC$. If AC = 4 cm, DC = 2 cm, then DE =R B B. $\sqrt{3}$ cm. D. $\sqrt{12}$ cm. A. 1 cm. C. 2 cm. 44. When every datum in a set of data is decreased by 3, which of the following will also decrease by 3?
 - I. Mean II. Median III. Mode A. I only B. I and II only C. II and III only D. I. II and III
- 45. Let O be the origin. If the coordinates of the points A and B are (-4, 4) and (-8, 0)respectively, which of the following gives the coordinates of the circumcentre and orthocentre of $\triangle OAB$?

	Circumcentre	Orthocentre
A.	(-4, 0)	(-4, 4)
B.	(-4, 0)	(-4, 2)
C.	(-4, 4)	(-4, 2)
D.	(-4, 4)	(-4, 0)

~ End of Paper ~