Exam		
Number		

FINAL EXAMINATION 2012-2013

Form 3 Mathematics Paper 1

Time allowed : 90 minutes

Section A and B

Question – Answer Book

Instructions

- 1. Write your examination number in the spaces provided on the top right corner of this cover page.
- 2. Section A carries 20 marks. Section B carries 40 marks.
- 3. Attempt ALL questions in this section.

Write your answers in the spaces provided in this Question-Answer Book. The last page is a supplementary answer sheet.

- 4. All working must be clearly shown, or mark may be deducted.
- 5. Unless otherwise specified, numerical answers should be either exact or correct to **3 significant figures**.
- 6. Use of HKEAA approved calculators is allowed.
- 7. This paper must be answered in English.
- 8. The diagrams in this paper are not necessarily drawn to scale.

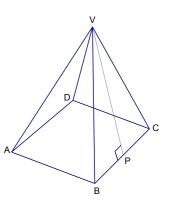
Page No.	Marks
1	
2	(8)
3	(12)
4	(10)
5	(9)
6	(12)
Total Marks	(60)

Section A	[20 marks]	
1. Simplify	$\frac{(2a^{-1})^2}{(3ab)^{-1}}$ and express the result with positive indices.	
		(2 marks)
2. (a) M	ake y the subject of the formula $\frac{2}{x+y} = 5 - x$.	
	nd y when $x = -2$.	
		(3 marks)
		ה th קי
		ot write
		(3 marks)
		Dea
3. (a) Fa	ctorize $x^2 - y^2$.	
(b) H	ence, or otherwise, evaluate $998^2 - 4$ without using a calculator.	(3 marks)
		(3 marks)
Go on to the	- 1 -	Page Total

https://www.study-together.com/edu/

4.	Write down the number of axes of symmetry and the order of rotational symme a square.	try for (2 marks)
5.		$E + 10^{\circ} D = 120^{\circ} C$
6.	In the figure, find QR in simplified surd form. (3 marks) P = 8 cm 4 cm Q	
7.	Simplify $\frac{15}{\sqrt{5}}$.	(2 marks)
8.	In the figure, <i>ABCD</i> and <i>CDEF</i> are rectangles. It is given that $AB = 20 \text{ cm}$, $BC = 5 \text{ cm}$ and $CF = 12 \text{ cm}$. Find the total surface area of the solid. (3 marks)	A D D C C
G	-2 -	Page Total

9.	tion B[40 marks]Solve the following inequality and represent the solutions graphically.472	(2
	$\frac{4}{3}x - \frac{7}{15} > \frac{2}{5}x$	(3 marks)
10.	In the figure, P is the orthocentre of ΔABC .	A
	It is given that $\angle ACB = 30^{\circ}$ and $BC = 20$ cm.	E
	Find CE in surd form.(4 marks)	Р
	C 30°	DB
••••••		
11.	The prices of 10 toys in a toy shop are \$45, \$10, \$50, \$10, \$80, \$70, \$10, \$ The shop evenes claims that the evenese price of the toys is \$10	60, \$10, \$65.
	The shop owner claims that the average price of the toys is \$10.(a) Which average is used by the shop owner ?	
	(b) Can the shop owner's claim reasonably reflect the central tendency of	of the prices ?
	Explain briefly.	-
		(3 marks)
	- 3 -	
G	o on to the next page	Page Total


12. (a) Prove the following i	$\cos^2 \theta$	$\frac{1}{\cos\theta}$.	
(b) Solve the equation	$\frac{\sqrt{(1-\sin\theta)(1+\sin\theta)}}{\cos^2\theta} = 2$		(4 marks)
13. In the figure, <i>ABCD</i> is a second secon	quare. Δ <i>ADE</i> is equilateral. (5 marks)	C	Please do not write in the margin
Go on to the next page	- 4 -		Page Total

14.	(a)	Factorize	x^2	-5x - 14.
-----	-----	-----------	-------	-----------

- (b)
- Solve the quadratic equation $x^2 5x 14 = 0$. Solve the quadratic inequality $x^2 5x 14 \le 0$. (c)

	(c) Solve the quadratic inequality $x - 5x - 14 \le 0$.	(7 marks)	
15.	As shown in the figure, L_1 , L_2 and L_3 are three staright lines such that $L_1 // L_3$. Also L_2 is perpendicular to both L_1 and L_3 . Find the slopes of L_1 , L_2 and L_3 . (5 marks)	, L2	Please do not write in the margin
		Q (5 , -1) L ₁ L ₃	L .
G	o on to the next page	Page Total	

16. In the figure, VABCD is a right square based pyramid. Given that AB = 20 cm and VP = 26 cm. Find the volume of the (4 marks) pyramid.

- 17. In a box containing 3 green balls and 2 red balls, two balls are selected randomly one by one without replacement.
 - (a) Draw a table to show all outcomes of the selection.
 - (b) A game is designed as follows:
 - (i) A player pays \$5 to select two balls randomly from the above box. If the selected balls are the same colour, \$10 is awarded.
 - If the colours of the selected balls are different, nothing is awarded. (ii)

Please do not write in the margin The game organizer claims that this is a fair game. Do you agree ? Explain in terms of expected value. (5 marks)

-	
- 6 -	D T (-1
	Page Total
Go on to the next page >	-
Go on to the next page	

https://www.study-together.d om/edu/

Supplementary Answer Sheet	
	Please do not write in the margin
	n the n
	write i
	do not
	lease
	<u>م</u>

- End of Section A and B -