ST. STEPHEN'S GIRLS' COLLEGE Mid-Year Examination 2021 – 2022

Form 4

18 students

Mathematics Extended Part Module 1 (Calculus and Statistics) Time allowed: 45 minutes Total marks: 35 Question/Answer Paper

Please read the following instructions very carefully.

- 1. Write your class, class number and name in the spaces provided on this cover.
- 2. Attempt ALL questions in this paper. Write your answers in the spaces provided in this Question/Answer Paper.
- 3. Unless otherwise specified, all working must be clearly shown.
- 4. Unless otherwise specified, numerical answers should be exact or given to **4 decimal places**.

Class	
Class No.	
Name	

	Marker's Use
1	/7
2	/7
3	/6
4	/6
5	/9
Total	/35

F.4 Mathematics Extended Part Module 1 Mid-Year Examination 2021-2022

- 1. Let *n* be a positive integer.
 - (a) Expand $(x+3x^2)^n$ in ascending powers of x as far as the term in x^{n+2} .
 - (b) It is given that the coefficient of x^{n+2} in the expansion of $(x+3x^2)^n$ is 90. Find the value of *n*.

(c) Find the coefficient of x^7 in the expansion of $\frac{(x+3x^2)^n}{e^{2x}}$. (7 marks)

F.4 Mathematics Extended Part Module 1 Mid-Year Examination 2021-2022

- 2. Let *a* and *k* be real constants.
 - (a) Express $f(x) = (1 + ae^{-kx})^3$ in ascending powers of x up to the term in x^2 .
 - (b) If the constant term in the expansion of f(x) is 8, find the value of a.
 - (c) If the coefficient of x in the expansion of f(x) is -12, find the coefficient of x^2 .

(7 marks)

_____ -----

3. (a) Show that
$$3^{\frac{-2z}{\ln 3}} = e^{-2x}$$
 for all values of x.
(b) Hence, otherwise, solve $\begin{cases} y = 2 \cdot 3^{\frac{-2z}{\ln 3}} \\ y = 7e^{-x} + 15 \end{cases}$ (6 marks)
(6 marks)
(6 marks)
(7 marks)
(6 marks)
(8 marks)
(9 marks)

F.4 Mathematics Extended Part Module 1 Mid-Year Examination 2021-2022

5. A researcher studies the growth of a plant on the surface of a pond. The area A (in thousand m^2) of the pond covered by the plant can be modelled by

$$A = \frac{45a^{kt-2}}{2a^{kt-2}+1},$$

where $t \ (t \ge 0)$ is the number of months elapsed since the start of the study, and *a* and *k* are constants.

- (a) Express $\ln\left(\frac{45}{A} 2\right)$ as a linear function of *t*. (2 marks)
- (b) It is known that the slope and the intercept on the horizontal axis of the linear

function in (a) are $-\ln \sqrt[5]{3}$ and 10 respectively.

- (i) Find the values of a and k.
- (ii) Find the area of the pond covered by the plant initially.
- (iii) It is given that A is an increasing function. The researcher claims that the area of the pond covered by the plant cannot exceed 23000 m² in the long run. Do you agree? Explain your answer.

(7 marks)

..... -----_____

End of Paper