TB(3B) Ch.7 Areas & Volumes (III) Multiple Choice Questions

1. [16-17 Standardized Test, 8]

In the figure, a cylinder, a sphere and a right circular cone, each of which has radius r and height 2r, are given. Let A_1 , A_2 and A_3 be the total surface areas of the cylinder, the sphere and the cone respectively. Which of the following is/are correct?

- I. $A_1 = A_2$ II. $A_2 > A_3$ III. $A_1 : A_2 : A_3 = 2 : 4 : 3$
- A. II only
- **B.** I and II only
- $\ensuremath{C}\xspace$. II and III only
- **D.** I, II and III

2. [16-17 Standardized Test, 9]

In the figure, a right circular cone is cut horizontally into 3 parts. Part A is a cone, part B and part C are circular frustums. Find the ratio of the curved surface areas of parts A : B : C.

A. 1:3:2
B. 1:9:4
C. 1:15:20
D. 1:16:36

3. [16-17 Mid-year Exam, 10]

In the figure, *VABC* is a right-angled triangular pyramid where *V* is vertically above *C*. AC = 7 cm, BC = 24 cm and VC = 10 cm. Find the volume of *VABC*.

- **A.** 280 cm³
- **B.** 420 cm^3
- **C.** 560 cm^3
- **D.** 840 cm³

GHS Past Paper Question Bank – MC Questions

4. [16-17 Mid-year Exam, 16]

If the total surface area of a right circular cone with a base radius of 3 cm is 24π cm², the volume of the cone is

A. 12π cm³.

- **B.** 15π cm³.
- **C.** 24π cm³.
- **D.** 36π cm³.

5. [16-17 Mid-year Exam, 17]

The height of a circular cone is the same as its base radius. If the volume of the circular cone increases by 20%, the percentage change of its total surface area is

A. - 36 %.

B. + 6.27%.

C. + 12.9%.

D. + 44%.

6. [16-17 Final Exam, 14]

If the radius of a larger sphere is 20% longer than that of a smaller sphere, then by what percent is the surface area of the larger sphere greater than that of the smaller sphere?

A.	20%	B.	40%
C.	44%	D.	72.8%

7. [16-17 Final Exam, 15]

In the figure, find the total surface area of the right pyramid with square base correct to 3 significant figures.

- **A.** 529 cm^2
- **B.** 633 cm^2
- **C.** 663 cm^2
- **D.** 1100 cm^2

8. [17-18 Mid-year Exam, 11]

The base of a pyramid is a right-angled isosceles $\triangle ABC$ with $\angle ABC = 90^{\circ}$ and the height of the pyramid is 8 cm. If the volume of the pyramid is 48 cm³, find the length of *AB*.

- **A.** 3 cm
- **B.** $3\sqrt{2}$ cm
- **C.** 6 cm
- **D.** $6\sqrt{2}$ cm

9. [17-18 Mid-year Exam, 20]

In the figure, *VABCD* is a solid right pyramid. *ABCD* is a rectangle with $AB = \frac{20}{3}$ cm and BC = 12 cm.

The height VE of ΔVAB is 10 cm. Find the total surface area of the pyramid.

A.
$$\frac{512}{3}$$
 cm²
B. $\frac{560}{3}$ cm²
C. $\frac{752}{3}$ cm²
D. $\frac{800}{3}$ cm²

3

10.[17-18 Standardized Test 2, 9]

The base radii of the upper and lower bases of a right circular frustum are 6 cm and 9 cm respectively. The height of the frustum is 8 cm. Find the volume of the frustum.

- **A.** 296π cm³
- **B.** 456π cm³
- **C.** 888π cm³
- **D.** 1368π cm³

11. [17-18 Standardized Test 2, 10]

The solid in the figure consists of a right circular cone and a hemisphere. Find the total surface area of the solid in terms of π and r.

- **A.** $21\pi r^2$
- **B.** $30\pi r^2$
- **C.** $33\pi r^2$
- **D.** $51\pi r^2$

12. [17-18 Final Exam, 5]

If a paper cone of base radius 7 cm and height 24 cm is cut along a slant edge and unfolded into a sector, find the angle of the sector.

- **A.** 28.224°
- **B.** 100.8°
- **C.** 105°
- **D.** 109.375°

13. [17-18 Final Exam, 6]

It is given that the volume of a sphere is 288π cm³, find the surface area of the sphere.

- **A.** 144π cm²
- **B.** 288π cm²
- **C.** $576\sqrt{2}\pi$ cm²
- **D.** 864π cm²

14. [17-18 Final Exam, 16]

Find the volume of a triangular prism with all lengths of edges $\sqrt{3}$.

A.
$$\frac{3\sqrt{3}}{4}$$

B. $\frac{9}{4}$
C. $\frac{3\sqrt{15}}{4}$
D. $3\sqrt{3}$

15. [18-19 Mid-year Exam, 7]

In the figure, *VABC* is a triangular pyramid with AC = 5 cm, BC = 6 cm and VC = 10 cm. Find its volume.

- **A.** 50 cm^3
- **B.** 100 cm^3
- **C.** 150 cm^3
- **D.** 300 cm^3

GHS Past Paper Question Bank – MC Questions

16. [18-19 Standardized Test 2, 4]

a, *b* and *c* are linear measurements of a solid. Which of the following is a possible formula for the volume of the solid?

A.
$$a^2 \sqrt{b^2 + c^2}$$

B. $4\pi a^2$
C. $\sqrt{(a-b)^2 + c^2}$

D.
$$ab+c^2$$

17. [18-19 Standardized Test 2, 10]

The figure show a sphere with radius 5r and a frustum of right circular cone with lower base radius 8r, upper base radius 4r and height 3r. Let A_1 , A_2 be the total surface areas of the sphere and the frustum respectively, and V_1 , V_2 be the volumes of the sphere and the frustum respectively. Which of the following are correct?

I. $A_1: A_2 = 5:7$

II. $V_1 > V_2$

- III. If the sphere is cut into two identical hemispheres, the new total surface area is larger than A_2 .
- A. I and II only B. I and III only
- C. II and III only D. I, II and III

18. [18-19 Final Exam, 8]

When a solid sphere with radius 6 cm is split into two hemispheres, find the total surface area.

- **A.** 108π cm²
- **B.** 144π cm²
- **C.** 180π cm²
- **D.** 216π cm²

19. [18-19 Final Exam, 17]

If AM : MN = 3 : 2, find the ratio of the volume of the cone *ABC* to the volume of the frustum *BCED*.

- **A.** 3 : 1
- **B.** 9:5
- **C.** 27 : 19
- **D.** 27 : 98

20. [20-21 Standardized Test, #6]

The figure shows a solid consisting of a hemisphere and a right circular cone with a common base of radius r cm. The height of the cone is h cm. If the volume of the hemisphere is the same as that of the cone, find the ratio r : h.

- **A.** 1:4
- **B.** 1:2
- **C.** 2:1
- **D.** 4:1

21. [20-21 Standardized Test, #7]

The figure shows a right conical paper cup. The ratio of the base radius to the height of the paper cup is 3 : 4. The paper cup is then cut along its slant height and flattened to form a sector of area 135π cm². Find the height of the paper cup.

- **A.** 3 cm
- **B.** 9 cm
- **C.** 12 cm
- **D.** 15 cm

22. [20-21 Standardized Test, #8]

A sphere is expanded so that the volume is increased by 100%. Find the percentage increase in the curved surface area of the sphere.

- **A.** 21.5%
- **B.** 26.0%
- **C.** 41.4%
- **D.** 58.7%

23. [20-21 Final Exam, #8]

In the figure, *VABC* is a pyramid with VA = 9 cm, VB = 15 cm and BC = 5 cm. Find the volume of the pyramid *VABC*.

24. [20-21 Final Exam, #17]

In the figure, a steel sphere is put into a cylindrical container of base radius 7.5 cm. The water surface just covers the sphere and the depth of water is 6 cm. Find the original depth of water before putting the sphere into the container.

A. 0.64 cm **B.** 0.88 cm **C.** 4.8 cm **D.** 5.36 cm

