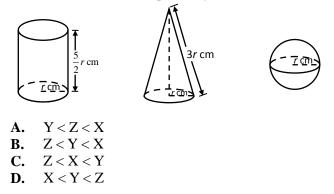
Areas & Volumes Multiple Choice Questions


1. [14-15 Standardized Test, 2]

A hollow cylindrical metal pipe, 1 m long, has an external radius and an internal radius of 5 cm and 4 cm respectively. The volume of metal is

- **A.** $10\pi \,\mathrm{cm}^3$ **B.** $90\pi \,\mathrm{cm}^3$
- **C.** $100\pi \text{ cm}^3$ **D.** $900\pi \text{ cm}^3$

2. [14-15 Standardized Test, 3]

The figure shows a right circular cylinder, a right circular cone and a sphere. Their curved surface areas are $X \text{ cm}^2$, $Y \text{ cm}^2$ and $Z \text{ cm}^2$ respectively. Which of the following is true?

3. [14-15 Standardized Test, 10]

A solid metal sphere of volume 504 cm³ is melted and recast into 3 smaller solid spheres whose curved surfaces are in the ratio 1:4:9. The volume of the medium sphere is

- **A.** 14 cm^3 .
- **B.** 36 cm^3 .
- C. 112 cm^3 .
- **D.** 144 cm^3 .

4. [14-15 Final Exam, 9]

The formula $b^m \sqrt{a^2 + c^n}$ represents the total surface area of a solid where *a*, *b* and *c* are linear measurements of the object, *m* and *n* are constants. Which of the following are the possible values of *m* and *n*?

- **A.** *m* = 1, *n* =1
- **B.** m = 1, n = 2
- C. m = 2, n = 1D. m = 2, n = 2
- **D.** m = 2, n = 2

[鍵入文字]

5. [14-15 Final Exam, 21]

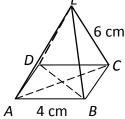
If the base radius of a right circular cone is increased by 30% and slant height is decreased by 40%, then the percentage increase in its curved surface area is

A. -78%. **B.** -22%.

C. −10%. **D.** 78%.

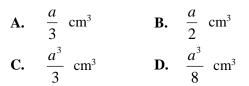
6. [15-16 Mid-year Exam, 7]

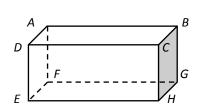
The base area of a pyramid is 120 cm² and the height is 10 cm. If the pyramid is melted and recast into a triangular prism with base area 80 cm². Find the percentage change in height from pyramid to prism.


A.	100%	B.	50%
1	100/0	D .	5070

C. -50% -100%D.

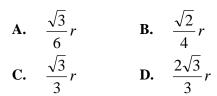
7. [15-16 Mid-year Exam, 8]


The figure shows a right pyramid with a square base of side 4 cm and its slant height is 6 cm. Find the total area of all lateral faces.


- **A.** 22.6 cm^2
- **B.** 45.3 cm^2
- **C.** 61.3 cm^2
- **D.** 90.5 cm^2

8. [15-16 Standardized Test, 3]

If the volume of cuboid ABCDEFGH is a^3 cm³, find the volume of pyramid ADEFH.



9. [15-16 Standardized Test, 10]

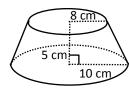
A cube can just be fitted into a sphere of radius $\frac{r}{2}$ so that all the vertices of the cube touch the sphere.

Find the length of a side of the cube.

GHS Past Paper Question Bank - MC Questions

[鍵入文字]

10.[15-16 Final Exam, 6]

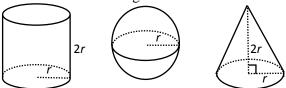

In the figure, *VABCD* is a right pyramid with a square base *ABCD* of area 36 cm² and the slant height is 5 cm. The total surface area of the pyramid is V 5 cm

A. 48 cm². **B.** 60 cm². **C.** 72 cm². **D.** 84 cm².

11. [15-16 Final Exam, 26]

In the figure, the radii of the upper and lower bases of a frustum are 8 cm and 10 cm respectively. Find the total surface area of the frustum, correct to 3 significant figures.

A. 261 cm² **B.** 515 cm² **C.** 820 cm² **D.** 1280 cm²

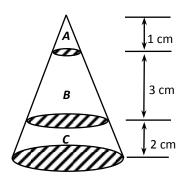

12. [15-16 Final Exam, 19]

What is the dimension of the measurement $\pi x^2 + \pi x \sqrt{4x^2 + y^2}$ if x and y are linear measurements?

A. 1	B. 2
C. 3	D. 4

13. [16-17 Standardized Test, 8]

In the figure, a cylinder, a sphere and a right circular cone, each of which has radius r and height 2r, are given. Let A_1 , A_2 and A_3 be the total surface areas of the cylinder, the sphere and the cone respectively. Which of the following is/are correct?


I. $A_1 = A_2$ II. $A_2 > A_3$ III. $A_1 : A_2 : A_3 = 2 : 4 : 3$

A. II only**B.** I and II only**C.** II and III only

D. I, II and III

14. [16-17 Standardized Test, 9]

In the figure, a right circular cone is cut horizontally into 3 parts. Part A is a cone, part B and part C are circular frustums. Find the ratio of the curved surface areas of parts A : B : C.

A. 1:3:2
B. 1:9:4
C. 1:15:20
D. 1:16:36

15. [16-17 Mid-year Exam, 10]

In the figure, *VABC* is a right-angled triangular pyramid where *V* is vertically above *C*. AC = 7 cm, BC = 24 cm and VC = 10 cm. Find the volume of *VABC*.

- **A.** 280 cm³
- **B.** 420 cm³
- **C.** 560 cm^3
- **D.** 840 cm^3

16. [16-17 Mid-year Exam, 16]

If the total surface area of a right circular cone with a base radius of 3 cm is 24π cm², the volume of the cone is


- **A.** 12π cm³.
- **B.** 15π cm³.
- **C.** 24π cm³.
- **D.** 36π cm³.

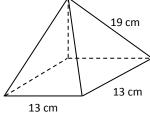
17. [16-17 Mid-year Exam, 17]

The height of a circular cone is the same as its base radius. If the volume of the circular cone increases by 20%, the percentage change of its total surface area is

A. − 36 %.

- **B.** + 6.27%.
- **C.** + 12.9%.
- **D.** + 44%.

18. [16-17 Final Exam, 14]


If the radius of a larger sphere is 20% longer than that of a smaller sphere, then by what percent is the surface area of the larger sphere greater than that of the smaller sphere?

A.	20%	В.	40%
C.	44%	D.	72.8%

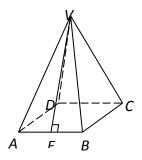
19. [16-17 Final Exam, 15]

In the figure, find the total surface area of the right pyramid with square base correct to 3 significant figures.

- **A.** 529 cm^2
- **B.** 633 cm^2
- **C.** 663 cm^2
- **D.** 1100 cm^2

20. [17-18 Mid-year Exam, 11]

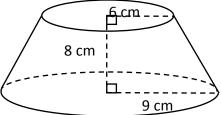
The base of a pyramid is a right-angled isosceles $\triangle ABC$ with $\angle ABC = 90^{\circ}$ and the height of the pyramid is 8 cm. If the volume of the pyramid is 48 cm³, find the length of *AB*.


- **A.** 3 cm
- **B.** $3\sqrt{2}$ cm
- **C.** 6 cm
- **D.** $6\sqrt{2}$ cm

21. [17-18 Mid-year Exam, 20]

In the figure, *VABCD* is a solid right pyramid. *ABCD* is a rectangle with $AB = \frac{20}{3}$ cm and BC = 12 cm.

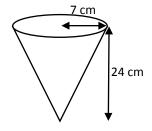
The height VE of ΔVAB is 10 cm. Find the total surface area of the pyramid.


A.
$$\frac{512}{3}$$
 cm²
B. $\frac{560}{3}$ cm²
C. $\frac{752}{3}$ cm²
D. $\frac{800}{3}$ cm²

22.[17-18 Standardized Test 2, 9]

The base radii of the upper and lower bases of a right circular frustum are 6 cm and 9 cm respectively. The height of the frustum is 8 cm. Find the volume of the frustum.

- **A.** 296π cm³
- **B.** 456π cm³
- **C.** 888π cm³
- **D.** 1368π cm³


23. [17-18 Standardized Test 2, 10]

The solid in the figure consists of a right circular cone and a hemisphere. Find the total surface area of the solid in terms of π and r.

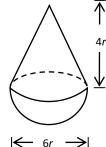
- **A.** $21\pi r^2$
- **B.** $30\pi r^2$
- **C.** $33\pi r^2$
- **D.** $51\pi r^2$

24. [17-18 Final Exam, 5]

If a paper cone of base radius 7 cm and height 24 cm is cut along a slant edge and unfolded into a sector, find the angle of the sector.

- **A.** 28.224°
- **B.** 100.8°
- **C.** 105°
- **D.** 109.375°

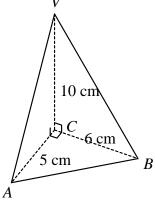
25. [17-18 Final Exam, 6]


It is given that the volume of a sphere is 288π cm³, find the surface area of the sphere.

- **A.** 144π cm²
- **B.** 288π cm²
- C. $576\sqrt{2}\pi$ cm²
- **D.** 864 π cm²

26. [17-18 Final Exam, 16]

Find the volume of a triangular prism with all lengths of edges $\sqrt{3}$.

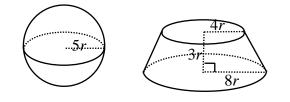

A.
$$\frac{3\sqrt{3}}{4}$$

B. $\frac{9}{4}$
C. $\frac{3\sqrt{15}}{4}$
D. $3\sqrt{3}$

27. [18-19 Mid-year Exam, 7]

In the figure, *VABC* is a triangular pyramid with AC = 5 cm, BC = 6 cm and VC = 10 cm. Find its volume.

- **A.** 50 cm^3
- **B.** 100 cm^3
- **C.** 150 cm^3
- **D.** 300 cm^3


28. [18-19 Standardized Test 2, 4]

a, *b* and *c* are linear measurements of a solid. Which of the following is a possible formula for the volume of the solid?

A.
$$a^2 \sqrt{b^2 + c^2}$$

B. $4\pi a^2$
C. $\sqrt{(a-b)^2 + c^2}$
D. $ab + c^2$

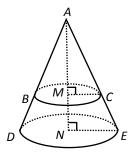
29. [18-19 Standardized Test 2, 10]

The figure show a sphere with radius 5r and a frustum of right circular cone with lower base radius 8r, upper base radius 4r and height 3r. Let A_1 , A_2 be the total surface areas of the sphere and the frustum respectively, and V_1 , V_2 be the volumes of the sphere and the frustum respectively. Which of the following are correct?

- I. $A_1: A_2 = 5:7$
- II. $V_1 > V_2$
- III. If the sphere is cut into two identical hemispheres, the new total surface area is larger than A_2 .
- A. I and II onlyB. I and III onlyC. II and III onlyD. I, II and III

30. [18-19 Final Exam, 8]

When a solid sphere with radius 6 cm is split into two hemispheres, find the total surface area.


A. 108π cm²

- **B.** 144π cm²
- **C.** $180\pi \text{ cm}^2$
- **D.** 216π cm²

31. [18-19 Final Exam, 17]

If AM : MN = 3 : 2, find the ratio of the volume of the cone *ABC* to the volume of the frustum *BCED*.

A. 3:1
B. 9:5
C. 27:19
D. 27:98

