TB(3B) Ch.9 Trigonometric Relations Conventional Questions

1. [16-17 Standardized Test, #2]

It is given that $\cos \theta = \frac{\sqrt{5}}{4}$, where θ is an acute angle. Without finding the value of θ , write down the values of $\sin \theta$ and $\tan \theta$ in surd form. (2 marks)

2. [16-17 Final Exam, #8]

Evaluate $\frac{\sin 60^{\circ}}{\cos 60^{\circ} \tan^2 60^{\circ}}$. Leave the answer in surd form. (2 marks)

3. [16-17 Final Exam, #10]

If $\tan(90^\circ - \theta) = 3$, without using a calculator, find the value of $\frac{\cos^3 \theta + \cos \theta \sin^2 \theta}{\sin \theta}$. (3 marks)

4. [16-17 Final Exam, #19]

Find the value of $\sin 1^{\circ} \cos 1^{\circ} \tan 1^{\circ} - \sin 2^{\circ} \cos 2^{\circ} \tan 2^{\circ} + \sin 3^{\circ} \cos 3^{\circ} \tan 3^{\circ} - \ldots + \sin 89^{\circ} \cos 89^{\circ} \tan 89^{\circ}$. (2 marks)

5. [17-18 Standardized Test, #3]

It is given that $\tan \theta = \frac{\sqrt{5}}{2}$, where θ is an acute angle. Find the value of $\sin \theta \cos \theta$ in surd form without evaluating θ . (2 marks)

6. [17-18 Final Exam, #4]

Evaluate $\frac{\tan 60^{\circ} \cos^2 45^{\circ}}{\sin 30^{\circ}}$ without using calculator. Leave the answer in surd form. (2 marks)

7. [17-18 Final Exam, #5]

 $\triangle ABC$ is a right-angled triangle where $\angle A = \theta$ and $\angle C = 90^\circ$. If AB = 7 and BC = 2, find the value of $\tan \theta$ in surd form without evaluating θ . (2 marks)

8. [17-18 Final Exam, #10]

(a) Prove that
$$\sin \theta \tan^2(90^\circ - \theta) \equiv \frac{1}{\sin \theta} - \sin \theta$$
. (2 marks)

(b) Hence, or otherwise, solve $\sin \theta \tan^2 (90^\circ - \theta) - \frac{1}{\sin \theta} = -\frac{1}{2\tan(90^\circ - \theta)}$, where $0^\circ < \theta < 90^\circ$. (2 marks)

GHS Past Paper Question Bank – Conventional Question

Form 3

GHS Past Paper Question Bank – Conventional Question

Page 2 of 2

9. [18-19 Standardized Test 2, 4]

Evaluate $\frac{\cos 30^{\circ} \sin 45^{\circ} \tan 60^{\circ}}{\sin 60^{\circ}}$ without using calculator. Leave your answer in surd form.

(2 marks)

10. [18-19 Standardized Test 2, 7]

(a) Prove that $\cos^2 \theta - \cos^2 \theta \sin^2 \theta = \sin^2 \theta \cos^2 \theta \tan^2 (90^\circ - \theta)$, where θ is an acute angle.

(2 marks)

(b) It is given that $\sin^4 \theta - \sin^4 (90^\circ - \theta) = 1 - k^2$. Show that $k = \sqrt{2} \cos \theta$. (3 marks)

11. [18-19 Final Exam, #7]

Without using a calculator,

- (a) solve $\sin(60^\circ 2\theta) = \cos 50^\circ$, (2 marks)
- (**b**) find the value of $\tan^2 60^\circ \frac{1}{4\cos 60^\circ} \sin^2 45^\circ$. (2 marks)

12. [18-19 Final Exam, #16]

If $a + b = 90^\circ$, simplify $(\sin a + \sin b)^2 - 2 \cos a \cos b$. (2 marks)

13. [20-21 Final Exam #5]

Find the acute angle θ in $\tan(\theta - 30^\circ) = \frac{1}{\tan 2\theta}$. (2 marks)

14. [20-21 Final Exam #6]

It is given that $\sin\theta = \frac{\sqrt{2}}{3}$, where θ is an acute angle. Without evaluating θ ,

(a) find the values of $\cos\theta$ and $\tan\theta$. (2 marks)

(**b**) Hence, find the value of $\sin\theta \tan\theta$. (2 marks) (Leave all your answers in surd form.)

15. [20-21 Final Exam #11]

(a) Prove that
$$\frac{1-\sin(90^\circ - \theta)\cos\theta}{\tan\theta} \equiv \sin\theta\cos\theta$$
. (2 marks)
(b) Hence, or otherwise, find the acute angle x such that $\frac{1-\sin60^\circ\cos30^\circ}{\tan30^\circ} = \frac{\tan x}{4}$. (2 marks)