Coordinate Geometry Conventional Questions

1. [14-15 Standardized Test, 1]

It is given that P(-1, 6), Q(-3, 0) and R(1, 2). Prove that ΔPQR is an isosceles right-angled triangle. (3 marks)

2. [14-15 Standardized Test, 7]

In **Figure 3**, $L_1 // L_2$. L_1 passes through (-1, 0) and (0, -3). L_2 passes through A (1, 2) and cuts *y*-axis at *B*.

- (a) Find the coordinates of *B*. (2 marks)
- (b) If C(c, d) is a point on L_2 such that BC : BA = 5 : 2, find the coordinates of C. (2 marks)

A(1, 2)

X

C(c, d)

 L_2

0

 L_1

Find the coordinates of *D*. (3 marks)

4. [14-15 Final Exam, 11]

If C (4, 2) is a point on AB, and the coordinates of A and B are (2, -6) and (7, y) respectively, find

(a)	AC:CB,	(2marks)
(b)	the value of <i>y</i> .	(1 mark)

Form 3

GHS Past Paper Question Bank – Conventional Question

5. [15-16 Standardized Test, 6]

In **Figure 4**, A(-6, 0), B(-1, 6) and C(6, 0) are the vertices of $\triangle ABC$ on the rectangular coordinate plane. *BD* is the height of $\triangle ABC$.

Figure 4

- (a) It is given that E(-6+5a, 6a) is a point on AB such that ED // BC, find the value of a.
- (b) It is given that F is a point on BC such that $DF \perp BC$. By considering the area of ΔBCD , find DF. (Leave your answer in surd form.) (3 marks)
- (c) BA is produced to a point G such that GA : GB = 1 : 3. Write down the coordinates of G. (1 mark)
- (d) A point *H* lies on *BD* such that BH : HD = 151 : 149. Gary claims that *E*, *H* and *F* are collinear. Do you agree? Explain briefly. (2 marks)

6. [15-16 Final Exam, 8]

The coordinates of A and B are (-1, 2) and (b, 8) respectively. It is given that C(2, 4) is a point on AB such that AC: CB = 1:2. (a) Find b. (2 marks)

(b) If $DB \perp AB$ and the coordinates of D are (2d, d), find d. (2 marks)

7. [15-16 Final Exam, 17]

In **Figure 9**, the diagonals *AC* and *BD* of quadrilateral *ABCD* intersect at *E*. It is given that *E* is the mid-point of *AC*.

- (a) Write down the coordinates of *E*.
- (b) Find $\angle ABD$ by analytical approach.

(1 mark) (3 marks)

GHS Past Paper Question Bank – Conventional Question

(2 marks)

8. [16-17 Standardized Test, 6]

- Consider the points A(-6, 0), B(2, 0) and C(4, -5). AC cuts the y-axis at M(0, y).
- (a) Show that AM : MC = 3 : 2.
- (b) Hence, find the area of $\triangle BCM$.

9. [16-17 Final Exam, 13]

In Figure 3, A(-3.5, 2), B(3, 0) and C(2, 6) are three points on the rectangular coordinate plane.

(a) Find the length of *AB*. (2 marks)

(b) If D is the mid-point of BC, determine whether AD

is perpendicular to *BC*? Explain your answer. (2 marks)

(c) E is a point on AB such that AE : EB = 3:2. Jason

claims that ED //AC. Do you agree? Explain your

answer.

Figure 3

10. [17-18 Standardized Test, 4]

A(8, 12), B(4, 2) and C(c, 0) are the vertices of a triangle. The mid-point K of AC lies on the y-axis.

- (a) (i) Find the value of c.
 - (ii) Write down the coordinates of *K*. (1 mark)

(2 marks)

(b) *D* is a point such that *ABCD* is a quadrilateral with AK : AC = BK : BD, where *B*, *K* and *D* are collinear. Kitty claims that *ABCD* must be a parallelogram. Do you agree? Explain briefly.

(2 marks)

11. [17-18 Standardized Test, 5]

A(15, -5), B(b, -1) and O(0, 0) are the vertices of $\triangle AOB$. A straight line L which passes through $P(1, 3\sqrt{2})$ and $O(-\sqrt{2}, -3)$ is parallel to BO.

(a)	Find the inclination of <i>PQ</i> .	(3 marks)
(b)	Find the value of <i>b</i> .	(1 mark)
(c)	Show that $\triangle AOB$ is a right-angled triangle.	(2 marks)

(2 marks) (4 marks)

(2 marks)

linate plane

12. [17-18 Final Exam, 11]

In **Figure 4**, the coordinates of the points *A* and *B* are (6, -2) and (2, -2) respectively. *A'* is the reflection image of *A* with respective to the *x*-axis.

- (a) Write down the coordinates of A'.
- (b) Prove that *BA*' is perpendicular to *OB*.

13. [17-18 Final Exam, 17]

In Figure 8, A(5, -2), B(5, 6) and C are the vertices of a triangle. It is givengthat 4D(4, 1) is the mid-point of AC and the coordinates of E are (5, 2). BD and CE intersect at G.

- (a) Find the coordinates of *C*.
- (b) (i) Show that CG : GE = 2 : 1.
 - (ii) Find the coordinates of G.
- (c) It is given that P is the circumcentre of $\triangle ABC$. Find the coordinates of P.

Figure 8

14. [18-19 Standardized Test 2, 6]

A(5, 10), B and C(13, 2) are three points on the rectangular coordinate plane. It is given that

- D(3, 0) is the mid-point of AB.
- (a) Write down the coordinates of *B*. (1 mark)
- (b) Determine whether $\triangle ACB$ is a right-angled triangle. (2 marks)
- (c) *E* is a point on the line segment joining *A* and *C* such that AE = EC. Prove that DE // BC.

(2 marks)

15. [18-19 Final Exam, 9]

The vertices of $\triangle ABC$ are A(-5,k), B(1,4) and C(-1,6), where k is a constant. BC cuts the y-axis at D.

- (a) Find the slope of BC and the coordinates of D.(3 marks)(b) If $AD \perp BC$,
(i) find the value of k,(2 marks)
 - (ii) prove that $\triangle ADB \cong \triangle ADC$. (2 marks)

16. [18-19 Final Exam, 15]

In **Figure 8**, *O* is the origin. If the coordinates of points *A* and *B* are (6, 0) and (10, 4) respectively, find the coordinates of the circumcentre *C* of $\triangle OAB$. (2 marks)

Figure 8