Page 1 of 3

Trigonometric Relations Conventional Questions

1. [13-14 Standardized Test 2, #5]

In Figure 5, *ABC* // *DEF*, *BE* \perp *AC*, *BC* = *BE*, *CE* = $2\sqrt{2}$ cm and $\angle AED = 30^{\circ}$. Find *AE*. (4 marks)

(3 marks)

(4 marks)

2. [13-14 Final Exam, #12]

It is given that $sin(90^\circ - \theta) = \frac{1}{5}$ where θ is an acute angle. Without using a calculator, find Figure 5

- (a) the values of $\cos\theta$, $\sin\theta$ and $\tan\theta$ in surd forms,
- (**b**) the value of ϕ in $\frac{24\cos(\phi + 20^\circ)\tan(\phi + 20^\circ)}{25\cos^2(90^\circ \theta)} = \frac{\cos(2\phi + 40^\circ)}{24\tan^2(90^\circ \theta)}$ where ϕ is an acute

angle, by using the result of part (a).

3. [14-15 Standardized Test, #2]

Without using calculator, find the acute angle θ in $\sin \theta = \frac{2\cos^2 30^\circ}{\tan 60^\circ}$. (2 marks)

4. [14-15 Standardized Test, #3]

It is given that $\sin \theta = 0.6$, where θ is an acute angle. Without finding the value of θ , find the value of $\frac{\sin^2 \theta}{\cos \theta - \tan \theta}$. (3 marks)

5. [14-15 Standardized Test, #6]

(a) Prove that $(\cos \alpha \cos \beta - \sin \alpha \sin \beta)(\cos \alpha \cos \beta + \sin \alpha \sin \beta) \equiv 1 - \sin^2 \alpha - \sin^2 \beta$. (3 marks) (b) Hence, find the value of

$$\frac{(\cos\alpha\cos\beta - \sin\alpha\sin\beta)(\cos\alpha\cos\beta + \sin\alpha\sin\beta) - \cos^2\alpha}{\tan^2\beta} - \sin^2\beta.$$
 (2 marks)

GHS Past Paper Question Bank – Conventional Question

6. [14-15 Final Exam, #1]

(a) Prove the identity
$$\frac{\tan \theta (1 - \sin^2 \theta)}{\cos \theta} \equiv \cos(90^\circ - \theta).$$
 (3 marks)

(b) It is given that $\tan \theta = \frac{3}{4}$. Without finding the value of θ , find the values of $\sin \theta$ and $\cos \theta$. (2 marks)

7. [15-16 Standardized Test, #2]

It is given that $\sin \theta = \frac{\sqrt{2}}{3}$, where θ is an acute angle. Find, without finding the value of θ , the values of $\tan \theta$ and $\cos \theta$. Leave your answers in surd form. (2 marks)

8. [15-16 Standardized Test, #5]

(a) Prove that
$$\frac{\sqrt{\sin^2 \theta - \cos^4(90^\circ - \theta)}}{\tan \theta} \equiv \cos^2 \theta$$
, where θ is an acute angle. (2 marks)

(b) Hence, or otherwise, solve
$$\frac{\sqrt{\sin^2 30^\circ - \cos^4 60^\circ}}{\tan 30^\circ} = \tan(x+20^\circ) - \frac{1}{4}$$
, where x is an acute angle. (2 marks)

(a) It is given that $\tan \theta = \frac{3}{4}$, where θ is an acute angle. Find the value of $\frac{1 - \cos \theta}{\sin \theta}$ without evaluating θ . (2 marks)

(b) Simplify
$$\sin \phi + (\cos \phi - 1) \tan(90^\circ - \phi)$$
. (3 marks)

10. [15-16 Final Exam, #18]

(a) Prove that
$$\frac{1-\cos\theta}{\sin\theta} \equiv \frac{\sin\theta}{1+\cos\theta}$$
. (2 marks)

(b) In Figure 10, *BCD* is a straight line and *CB* = *CA* = 1, $\angle ABD = \frac{\phi}{2}$ and $\angle ACD = \phi$.

Express $\tan \frac{\phi}{2}$ in terms of ϕ .

GHS Past Paper Question Bank – Conventional Question

11. [16-17 Standardized Test, #2]

It is given that $\cos \theta = \frac{\sqrt{5}}{4}$, where θ is an acute angle. Without finding the value of θ , write down the values of $\sin \theta$ and $\tan \theta$ in surd form. (2 marks)

12. [16-17 Final Exam, #8]

Evaluate $\frac{\sin 60^{\circ}}{\cos 60^{\circ} \tan^2 60^{\circ}}$. Leave the answer in surd form. (2 marks)

13. [16-17 Final Exam, #10]

If $\tan(90^\circ - \theta) = 3$, without using a calculator, find the value of $\frac{\cos^3 \theta + \cos \theta \sin^2 \theta}{\sin \theta}$. (3 marks)

14. [16-17 Final Exam, #19]

Find the value of $\sin 1^{\circ} \cos 1^{\circ} \tan 1^{\circ} - \sin 2^{\circ} \cos 2^{\circ} \tan 2^{\circ} + \sin 3^{\circ} \cos 3^{\circ} \tan 3^{\circ} - \ldots + \sin 89^{\circ} \cos 89^{\circ} \tan 89^{\circ}$.

15. [17-18 Standardized Test, #3]

It is given that $\tan \theta = \frac{\sqrt{5}}{2}$, where θ is an acute angle. Find the value of $\sin \theta \cos \theta$ in surd form without evaluating θ . (2 marks)

16. [17-18 Final Exam, #4]

Evaluate $\frac{\tan 60^{\circ} \cos^2 45^{\circ}}{\sin 30^{\circ}}$ without using calculator. Leave the answer in surd form. (2 marks)

17. [17-18 Final Exam, #5]

 $\triangle ABC$ is a right-angled triangle where $\angle A = \theta$ and $\angle C = 90^{\circ}$. If AB = 7 and BC = 2, find the value of $\tan \theta$ in surd form without evaluating θ . (2 marks)

18. [17-18 Final Exam, #10]

(a) Prove that $\sin \theta \tan^2(90^\circ - \theta) \equiv \frac{1}{\sin \theta} - \sin \theta$. (2 marks)

(b) Hence, or otherwise, solve $\sin \theta \tan^2 (90^\circ - \theta) - \frac{1}{\sin \theta} = -\frac{1}{2 \tan(90^\circ - \theta)}$, where $0^\circ < \theta < 90^\circ$.

(2 marks)

(2 marks)