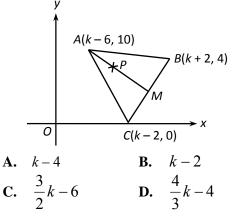

Coordinate Geometry Multiple Choice Question

1. [13-14 Standardized Test 2]

In the figure, the slopes of the straight lines L_1 , L_2 , L_3 and L_4 are m_1 , m_2 , m_3 and m_4 respectively. Arrange m_1 , m_2 , m_3 and m_4 in ascending order.



- **D.** $m_4 < m_1 < m_2 < m_3$
- 2. [13-14 Standardized Test 2] In the figure, $L_1 // L_2$. Find θ .

3. [13-14 Standardized Test 2]

In the figure, A(k-6,10), B(k+2,4) and C(k-2,0) are the vertices of $\triangle ABC$. *M* is the mid-point of *BC*. *P* is a point on *AM* such that *AP* : *PM* = 1 : 2. Find the *x*-coordinate of *P* in terms of *k*.

Form 3

4. [13-14 Final Exam #11]

In the figure, the slopes of straight lines L_1 , L_2 and L_3 are m_1 , m_2 and m_3 respectively. Arrange the slopes in descending order.

- **A.** $m_3 > m_2 > m_1$
- **B.** $m_3 > m_1 > m_2$
- **C.** $m_2 > m_3 > m_1$
- **D.** $m_1 > m_2 > m_3$

5. [13-14 Final Exam #22]

M is a point on *AB* such that AM : MB = 1 : 3. If *A* is (-6, 5) and *M* is (2, 9), then *B* is

А.	(-4, 6).	В.	(-4, 21).
C.	(26, 6).	D.	(26, 21).

6. [13-14 Final Exam #25]

A(1,5), B(3,7), C(5,5) and D(3,a) are the vertices of kite *ABCD*. Which of the following is/are true?

- I. $a \le 5$ II. AD = CDIII. $AC \perp BD$
- **A.** III only
- **B.** I and III only
- C. II and III only
- **D.** All of the above

7. [13-14 Final Exam #30]

E(0, -3), F(m, 3), G(4, 9) and H(-3, n) are the vertices of quadrilateral *EFGH*. The slope of *HG* is $\frac{1}{7}$ and the inclination of *EF* is 45°. Which side of the quadrilateral is the steepest?

 A.
 EF
 B.
 EH

 C.
 FG
 D.
 HG

8. [14-15 Standardized Test #4]

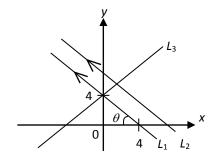
In the figure, find *AP* : *PB*.

- B. 2:3
- C. 3:1
- $D. \ 3:2$

9. [14-15 Standardized Test #8]

 $P\left(\frac{7}{2},-\frac{1}{2}\right)$ is the mid-point of the line segment joining A(a+b,-2) and B(a,b-a). Which of

P (-2, 3)


⊁B (1, 0)

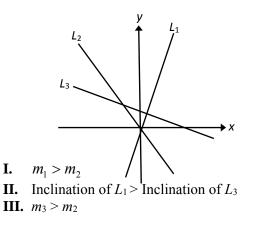
the following statements are true?

- I. b = 3
- II. B = (2, 1)
- III. AP: AB = 1:2
- A. I and II only
- **B.** I and III only
- C. II and III only
- **D.** I, II and III

10. [14-15 Standardized Test #9]

In the figure below, which of the following statements must be true?

- I. $\tan \theta = 1$
- II. Slope of $L_3 >$ Slope of L_2
- III. The inclination of L_2 is 45°.
- **A.** I and II only
- **B.** I and III only
- **C.** II and III only
- **D.** I, II and III


11. [14-15 Final Exam #16]

It is given that the distance between A(5, -6) and B(2, a) is 5 units. Which of the following is a possible value of a?

A.	-21	B.	-2	
C.	2		D.	8

12. [14-15 Final Exam #17]

In the figure, the slopes of straight lines L_1 , L_2 and L_3 are m_1 , m_2 and m_3 respectively. Which of the following must be correct?

- **A.** I and II only **B.** I and III only
- C. II and III only **D.** I, II and III

13. [14-15 Final Exam #28]

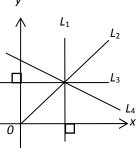
Let *O* be the origin. The coordinates of *P* and *Q* are (5, 10) and (9, 8) respectively. Then the *y*-coordinate of the orthocentre of $\triangle OPQ$ is

A.	5.	B.	7.
C.	9.	D.	10.

14. [15-16 Standardized Test #5]

It is given that the coordinates of A are (-4, 3). B is a point on the y-axis such that $\angle OAB = 90^\circ$, where O is the origin. Find the coordinates of B.

A.	(0, 5)	$\mathbf{B.} \left(-\frac{25}{4}, 0\right)$
C.	$\left(0,\frac{4}{3}\right)$	D. $\left(0, \frac{25}{3}\right)$


15. [15-16 Standardized Test #9]

In the figure, the slopes of straight lines L_1 , L_2 , L_3 and L_4 are m_1 , m_2 , m_3 and m_4 respectively. Which of the following must be correct?

I.
$$m_3 < m_4$$

II.
$$m_1 \times m_3 = -1$$

- III. Inclination of L_4 > Inclination of L_2
- A. III only
- **B.** I and II only
- C. II and III only
- **D.** I, II and III
- Form 3

16. [15-16 Final Exam #8]

There are three points A(-1, -2), B(3, 0) and C(9, 3). Find AB : BC.

A. 1 : 2	B. 2 : 3
C. 2 : 5	D. 3 : 2

17. [15-16 Final Exam #25]

In the figure, the slopes of straight lines L_1 , L_2 and L_3 are m_1 , m_2 and m_3 respectively. Which of the following is correct? y

18. [15-16 Final Exam #27]

 L_1 and L_2 are straight lines on a coordinate plane. L_2 passes through the origin and (-4, 2). If $L_1 \perp L_2$, find the inclination of L_1 .

A.	26.6°	B. 45°
C.	63.4°	D. 116°

19. [16-17 Standardized Test #5]

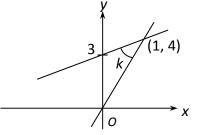
The coordinates of the points A and B are (2, 1) and (8, 5) respectively. If C(c, 0) is a point lying on the x-axis such that AC = BC, then c =

A.	3.	В.	5.
C.	6.	D.	7.

20. [16-17 Standardized Test #10]

In the figure, *L* cuts the *x*-axis and the *y*-axis at *A* and *B* respectively and its slope is -2. *P* is the midpoint of *AB*. Find θ .

- **B.** 53.1°
- **C.** 31.7°
- **D.** 26.6°
- 21. [16-17 Final Exam #16]

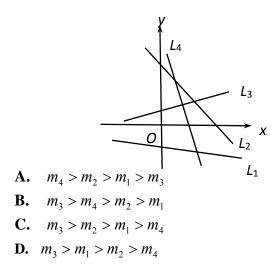

If A(-1, 2k+8), B(2, 3k+7) and C(11, -2) are collinear, find the value of k.

A. -7 **B.** -1 **C.** 1 **D.** 7

22. [16-17 Final Exam #17]

In the figure, find *k* correct to 3 significant figures.

- **A.** 31.0°
- **B.** 45.0°
- **C.** 46.0°
- **D.** 76.0°


23. [17-18 S Test 2 #4]

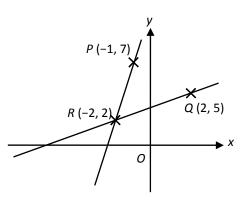
A(-2, 3), B(4, 6) and C(6, 7) are collinear. Find AB : BC.

- **A.** 1:3
- **B.** 2:3
- **C.** 3 : 1
- **D.** 3 : 2

24. [17-18 S Test 2 #5]

In the figure, the slopes of the straight lines L_1 , L_2 , L_3 and L_4 are m_1 , m_2 , m_3 and m_4 respectively. Arrange m_1 , m_2 , m_3 and m_4 in descending order.

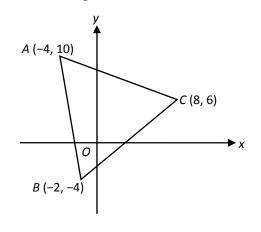
25. [17-18 Final Exam #7]


The points A(-8, 1), B(m, 2) and C(4, 5) are collinear. Find the value of m. A. -5

B.
$$-\frac{1}{3}$$

C. $-\frac{1}{5}$
D. 5

26. [17-18 Final Exam #17]


In the figure, a straight line passing through P(-1, 7) intersects another straight line passing through Q(2, 5) at R(-2, 2). Find $\angle PRQ$ correct to 3 significant figures.

- **A.** 22.2°
- **B.** 25.6°
- **C.** 41.8°
- **D.** 64.4°

27. [17-18 Final Exam #18]

In the figure, $\triangle ABC$ is an isosceles triangle. Find the area of $\triangle ABC$.

- A. $\frac{\sqrt{150}}{2}$ sq. units
- **B.** $10\sqrt{65}$ sq. units
- C. $40\sqrt{5}$ sq. units
- **D.** 80 sq. units