TB(3A) Ch. 4 Special Lines and Centres in a Triangle Conventional Questions

1. [16-17 Mid-year Exam #3]

The perimeter of an isosceles triangle is 28 cm and the length of one side is 6 cm. Janice claims that two different types of triangles can be formed. Do you agree? Explain your answer briefly.

(3 marks)

2. [16-17 Mid-year Exam #13]

Figure 5 shows a right-angled isosceles triangle $\triangle ABC$ with AB = BC = 10 cm. *I* is the incentre of $\triangle ABC$.

Figure 5

(a) Find $\angle ICB$.	(2 marks)
(b) Write down the orthocentre of $\triangle ABC$.	(1 mark)
(c) It is given that the radius of the inscribed circle is r cm, find the value of r .	(3 marks)

3. [16-17 Mid-year Exam #14]

In **Figure 6**, *ABCD* is a quadrilateral where DC > AD > AB > BC. Joseph claims that the perimeter of *ABCD* is less than the sum of lengths of its diagonals. Do you agree? Explain your answer briefly.

4. [16-17 Final Exam #18]

- In **Figure 8**, *I* is the incentre of $\triangle ABC$, where $\angle BAC = a$, $\angle ABC = b$ and $\angle ACB = c$.
- (a) Express $\angle BIC$ in terms of b and c.
- (b) Hence, show that $\angle BIC$ is an obtuse angle.

5. [17-18 Mid-year Exam #6]

Figure 8 In Figure 2, *ABCD* is a trapezium with *AB* // *DC*. *H* is a point inside *ABCD* such that *AH* and *DH* are angle bisectors of $\angle BAD$ and $\angle ADC$ respectively. Let $\angle BAH = x$, find $\angle AHD$.

6. [17-18 Mid-year Exam #11]

In Figure 6, *ABCD* is a parallelogram. *B* is the midpoint of *AE*. *DE* cuts *BC* at *F*. *AF* and *BD* cuts at G.

- (a) Prove that G is the centroid of $\triangle ADE$.
- (b) A student claims that the centroid of $\triangle BCD$ lies on *DF*. Do you agree? Explain your answer. (3 marks)

(2 marks)

(2 marks)

In **Figure 2**, AC is an altitude of $\triangle ABD$ while AD is the angle bisector of $\angle BAE$. It is given that $\angle ADC = 2\angle CAD$ and $\angle E = 20^{\circ}$.

- (a) Find $\angle B$. (3 marks)
- (b) Determine whether $\triangle ABE$ is an isosceles triangle.

In **Figure 3**, *I* is the incentre of $\triangle GHS$. If SG = SH and $\angle G = 40^\circ$, find $\angle BSH$.

(2 marks)

https://www.study-together.com/edu/

9. [18-19 Mid-year Exam #12]

In **Figure 6**, *BF* is the angle bisector of $\angle ABC \cdot FE$ and *FD* are respectively.

- (a) Prove that FE = FD.
- (b) By considering the areas of ΔAFB and ΔCFB , prove that $\frac{AF}{FC} = \frac{AB}{BC}$. (2 marks)

Figure 6

10. [19-20 Mid-year Exam, #11]

In $\triangle ABC$, *D* is a point on *AC* such that *BD* is the angle bisector of $\angle ABC$. *BD* is an altitude of $\triangle ABC$. A student claims that the centroid of $\triangle ABC$ lies on *BD*. Do you agree? Explain your answer.

(3 marks)

11. [19-20 Mid-year Exam, #13]

In **Figure 3**, *ABCD* is a rectangle and *BEDF* is a rhombus. *BD* meets *EF* at *G*. *FB* is the angle bisector of $\angle ABD$.

Figure 3

(a)	Prove that $\triangle ABF \cong \triangle GBE$.	(3 marks)
(b)	Prove that DE is the angle bisector of $\angle BDC$.	(3 marks)

(c) A student claims that AF : FD = 1 : 2. Do you agree? Explain your answer. (2 marks)

TB(3A) Ch. 4 Special Lines and Centres in a Triangle GHS Past Paper Question Bank – CQ

12. [20-21 Mid-year Exam, #6]

In **Figure 1**, BD = CD, $\angle ADB = \angle ADC$ and $\angle ACD = \angle DBC$.

Figure 1

(a)	Prove that $\Delta ABD \cong \Delta ACD$.	(2 marks)
(b)	Prove that D is an incentre of $\triangle ABC$.	(2 marks)

(c) If AD is produced to meet BC at E, prove that AE is the perpendicular bisector of BC.

(2 marks)

~ End ~