TB(3A) Ch. 3 Special Lines & Centres in a Triangle

Conventional Questions

1. [14-15 Mid-year Exam #6]

In **Figure 2**, *E* and *F* are mid-points of *AB* and *BC* respectively. *DE* is perpendicular bisector of *AC*, and ED //BC. *AGKF* and *EKC* are straight lines.

(a)	Prove that $\triangle AED \sim \triangle ABC$.	(2 marks)	A
(b)	Write down		
	(i) the orthocentre of $\triangle ABC$,	(1 mark)	
	(ii) the centroid of $\triangle ABC$.	(1 mark)	$E \swarrow D$
(c)	Prove that $AE + AD > \frac{BC}{2}$.	(2 marks)	
			$B \xrightarrow{/} F C$

2. [14-15 Final Exam #10]

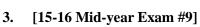
Figure 5(a) shows $\triangle ABC$ and *D* is a point on *BC*. It is given that *AD* is an angle bisector and an altitude of the triangle.

A

D

Figure 5(a)

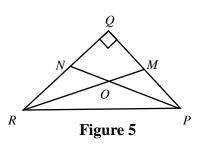
- (a) Prove that $\triangle ADB \cong \triangle ADC$.
- (**b**) If $AB = 4\sqrt{5}$ cm and BD = 4 cm,
 - (i) find AD.
 - (ii) In Figure 5(b), O is the circumcentre of $\triangle ABC$. Find OB. (Hint: O is equidistant from A, B and C.)



In Figure 5, *O* is the centroid of $\triangle PQR$. *MOR* and *NOP* are straight lines. *PM* = 6 cm, *QN* = 8 cm and $\angle PQR = 90^{\circ}$.

В

- (a) Find the length of *PR*.
- (b) Write down the orthocentre of ΔMQR .
- (c) Rachel claimed that MO = NO. Do you agree? Explain briefly.



В

С

(2 marks)

C

(3 marks)

(1 mark)

(3 marks)

A

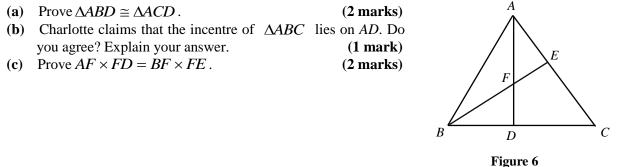
D

Figure 5(b)

Figure 2

4. [15-16 Final Exam #13]

In **Figure 6**, AD is a perpendicular bisector of BC while BE is an altitude of $\triangle ABC$. AD and BE intersect at F.



5. [16-17 Mid-year Exam #3]

The perimeter of an isosceles triangle is 28 cm and the length of one side is 6 cm. Janice claims that two different types of triangles can be formed. Do you agree? Explain your answer briefly.

6. [16-17 Mid-year Exam #13]

Figure 5 shows a right-angled isosceles triangle $\triangle ABC$ with AB = BC = 10 cm. *I* is the incentre of $\triangle ABC$.

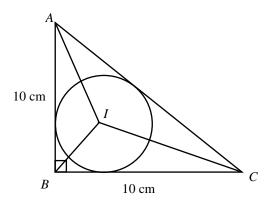
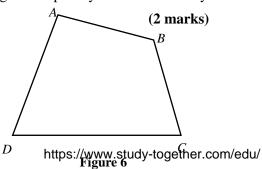


Figure :	5
----------	---

(a) Find $\angle ICB$.	(2 marks)
(b) Write down the orthocentre of $\triangle ABC$.	(1 mark)
(c) It is given that the radius of the inscribed circle is r cm, find the value of r .	(3 marks)

7. [16-17 Mid-year Exam #14]

In **Figure 6**, *ABCD* is a quadrilateral where DC > AD > AB > BC. Joseph claims that the perimeter of *ABCD* is less than the sum of lengths of its diagonals. Do you agree? Explain your answer briefly.



(3 marks)

8. [16-17 Final Exam #18]

In **Figure 8**, *I* is the incentre of $\triangle ABC$, where $\angle BAC = a$, $\angle ABC = b$ and $\angle ACB = c$.

- (a) Express $\angle BIC$ in terms of b and c.
- (b) Hence, show that $\angle BIC$ is an obtuse angle.

9. [17-18 Mid-year Exam #6] In Figure 2, *ABCD* is a trapezium with *AB* // *DC*. *H* is a point inside *ABCD* such that *AH* and *DH* are angle bisectors of $\angle BAD$ and $\angle ADC$ respectively. Let $\angle BAH = x$, find $\angle AHD$.

(3 marks)

(2 marks)

(2 marks)

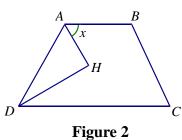


Figure 8

10. [17-18 Mid-year Exam #11]

In Figure 6, ABCD is a parallelogram. B is the midpoint of AE. DE cuts BC at F. AF and BD

- cuts at G.
- (a) Prove that G is the centroid of $\triangle ADE$. (2 marks)
- (**b**) A student claims that the centroid of $\triangle BCD$ lies on *DF*.

Do you agree? Explain your answer. (3 marks)

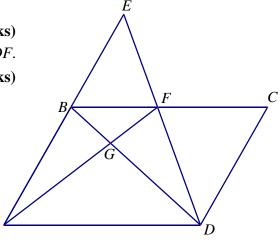
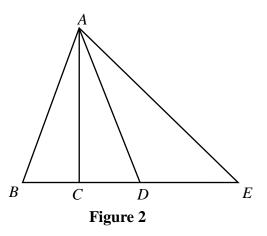


Figure 6

11. [18-19 Mid-year Exam #5]

In **Figure 2**, AC is an altitude of $\triangle ABD$ while AD is the angle bisector of $\angle BAE$. It is given that $\angle ADC = 2\angle CAD$ and $\angle E = 20^\circ$.

- (a) Find $\angle B$.
- (b) Determine whether $\triangle ABE$ is an isosceles triangle.

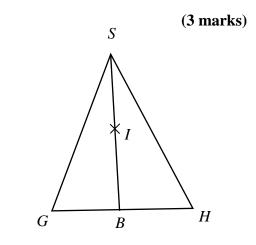


(3 marks)

(2 marks)

12. [18-19 Mid-year Exam #6]

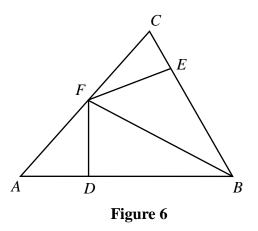
In **Figure 3**, *I* is the incentre of $\triangle GHS$. If SG = SH and $\angle G = 40^\circ$, find $\angle BSH$.



13. [18-19 Mid-year Exam #12]

In Figure 6, BF is the angle bisector of $\angle ABC$. FE and FD are altitudes of $\triangle CFB$ and $\triangle FAB$ respectively. (2 marks)

- (a) Prove that FE = FD.
- (**b**) By considering the areas of $\triangle AFB$ and $\triangle CFB$, prove that $\frac{AF}{FC} = \frac{AB}{BC}$. (2 marks)



~ End ~