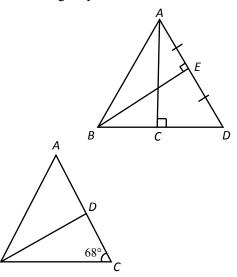
TB(3A) Ch. 3 Special Lines & Centres in a Triangle

Multiple Choice Questions

1. [13-14 Standardized Test 1]


In $\triangle ABD$, AE = ED, $AC \perp BD$ and $BE \perp AD$. Which of the following may not be correct?

- **A.** *AC* is an altitude of $\triangle ABD$.
- **B.** AC is a median of $\triangle ABD$.
- **C.** *BE* is an angle bisector of $\triangle ABD$.
- **D.** *BE* is a perpendicular bisector of $\triangle ABD$.

2. [13-14 Standardized Test 1]

In $\triangle ABC$, AB = AC and BD is an altitude. Find $\angle ABD$.

A. 22° **B.** 34° **C.** 46° **D.** 58°

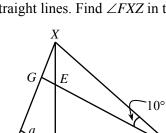
3. [13-14 Mid-year Exam Q6]

The perimeter of $\triangle ABC$ is 32 cm and the length of *AB* is 10 cm. Which of the following are the possible lengths of the other two sides?

R

- **A.** 4 cm and 18 cm
- **B.** 6 cm and 16 cm
- **C.** 7 cm and 15 cm
- **D.** 8 cm and 12 cm

4. [13-14 Mid-year Exam Q11]

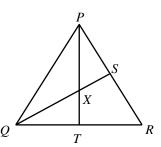

In the figure, what is the name of centre *X*?

- A. Incentre
- **B.** Centroid
- C. Orthocentre
- **D.** Circumcentre

5. [13-14 Mid-year Exam Q13]

In the figure, *E* is the orthocentre of $\triangle XYZ$. *XEF* and *GEZ* are straight lines. Find $\angle FXZ$ in terms of *a*.

A.
$$a$$
 B. $a - 10^{\circ}$
C. $a + 10^{\circ}$ **D.** $90^{\circ} - a$



X

6. [13-14 Mid-year Exam Q14]

In the figure, $\triangle PQR$ is an equilateral triangle. QS is a median and PT Is an angle bisector. $\bigotimes S$ and PT intersect at X. Which of the following must be true?

- I. $PT \perp QR$
- II. $\angle R = 2 \angle QPT$
- III. Area of $\Delta PQX = 2 \times \text{Area of } \Delta QXT$
- A. I only

- **B.** I and III only
- **C.** II and III only
- **D.** All of the above

7. [13-14 Final Exam Q5]

In the figure, *EADBF* is a straight line and *CD* is the angle bisector of $\angle BCA$. Find $\angle BDC$.

- **A.** 85°
- **B.** 90°
- **C.** 95°
- **D.** 100°


В F 130°

120°

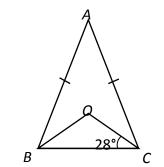
C

8. [13-14 Final Exam Q21]

In the figure, *I* is the incentre of equilateral $\triangle ABC$ and *AID* is a straight line. Which of the following must be true?

- I. AI = ID
- II. *I* is also the centroid of $\triangle ABC$
- III. Area of $\triangle ABI = 4 \times \text{Area of } \triangle BID$
- A. II only
- **B.** I and III only
- C. II and III only
- **D.** All of the above

9. [14-15 Mid-year Exam Q7]


Each of the following cases lists the lengths of 3 line segments. Which of them cannot form a triangle?

А.	8, 1, 7	В.	9, 5, 8
C.	10, 6, 8	D.	11, 11, 6

10. [14-15 Mid-year Exam Q8]

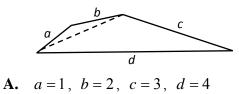
ABC is an isosceles triangle where AB = AC. *O* is the incentre of $\triangle ABC$ and $\angle BCO = 28^\circ$. Which of the following must be true?

- I. OB = OCII. $\angle ABC = 56^{\circ}$ III. $\angle BAC = 68^{\circ}$
- **A.** I and II only
- **B.** I and III only
- **C.** II and III only
- **D.** All of the above

11. [14-15 Mid-year Exam Q16]

Consider an equilateral triangle ABC. Which of the following lines coincide?

- I. Angle bisector of $\angle BAC$
- II. Median of $\triangle ABC$ from A
- III. Perpendicular bisector of BC
- A. I and II only
- **B.** I and III only
- C. II and III only
- **D.** All of the above


12. [14-15 Final Exam Q6]

In $\triangle ABC$, $\angle C = 90^{\circ}$. Which of the following centres lies on AB?

- A. Incentre B. Centroid
- C. Orthocentre D. Circumcentre

13. [14-15 Final Exam Q29]

The figure shows a quadrilateral. Which of the following is a possible set of values of a, b, c and d?

- **B.** a=1, b=2, c=4, d=8**C.** a=1, b=3, c=6, d=10
- **D.** a=1, b=4, c=9, d=16

14. [15-16 Mid-year Q3]

Which of the following sets of line segments can form a triangle?

- A. 3 cm, 5 cm, 8 cm
- B. 4.1 cm, 4.2 cm, 10 cm
- C. 0.1 cm, 0.2 cm, $\sqrt{0.15}$ cm
- D. $\sqrt{2}$ cm, $\sqrt{3}$ cm, $\sqrt{5}$ cm

15. [15-16 Mid-year Q4]

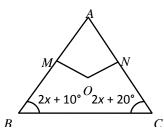
If $\triangle ABC$ is an obtuse-angled triangle, which of the following points lie inside $\triangle ABC$?

- **I.** The centroid of $\triangle ABC$
- **II.** The incentre of $\triangle ABC$
- **III.** The orthocentre of $\triangle ABC$
- A. I and II only

- **B.** I and III only
- C. II and III only
- **D.** I, II and III

16. [15-16 Mid-year Q18]

 $\triangle OBC$ is an isosceles triangle where


OB = OC. O is the orthocentre of $\triangle ABC$ and $\angle BCO = 28^\circ$. Which of the following must be true?

- **I.** $\angle BAC = 56^{\circ}$
- **II.** $\triangle ABC$ is isosceles.
- **III.** Incentre of $\triangle ABC$ lies on AO.
- **A.** I and II only
- **B.** I and III only
- **C.** II and III only
- **D.** I, II and III

17. [15-16 Mid-year Q19]

In $\triangle ABC$, *M* and *N* are mid-points of *AB* and *AC* respectively. *O* is the circumcentre of $\triangle ABC$, $\angle ABC = 2x + 10^{\circ}$ and $\angle ACB = 2x + 20^{\circ}$. Find $\angle MON$.

- **A.** $2x + 10^{\circ}$.
- **B.** $2x + 15^{\circ}$.
- **C.** $4x + 30^{\circ}$.
- **D.** $4x + 60^{\circ}$.

R

18. [15-16 Final Exam Q7]

In the figure, *B* is a point on *AC*. Which of the following may not be correct?

- **A.** AB + BD > AD**B.** BC + CD > BD
- $C. \quad AD + CD > AB$
- **D.** BD + CD > AB

19. [15-16 Final Exam Q30]

If G is the centre of $\triangle ABC$ which lies outside the triangle, which of the following must be wrong?

- I. *G* is a centroid.
- II. *G* is an orthocentre.
- III. $\angle B < 90^{\circ}$.

A. I only

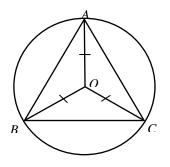
- **B.** II only
- C. I and II only
- **D.** I and III only

20. [16-17 Mid-year Exam Q4]

Which of the following cannot be the lengths of the three sides of a triangle?

- **A.** 4 cm, 6 cm, 8 cm
- **B.** 3.1 cm, 3.2 cm, 3.3 cm
- **C.** 7 cm, 7 cm, 7 cm

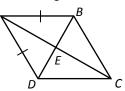
D. 3 cm, 4 cm, 7 cm


21. [16-17 Mid-year Exam Q7]

Which of the following centres lie inside an obtuse-angled triangle?

- **I.** Incentre
- II. Centroid
- III. Circumcentre
- IV. Orthocentre
- A. I and II only
- **B.** I and III only
- C. II and IV only
- D. III and IV only

22. [16-17 Mid-year Exam Q8]


In the figure, OA = OB = OC and A, B and C lie on the same circle with O as the centre. What is the name of centre O?

- A. Incentre
- B. Centroid
- C. Circumcentre
- D. Orthocentre

23. [16-17 Mid-year Exam Q19]

In the figure, *ABCD* is a quadrilateral. *AEC* and *BED* are straight lines. It is given that AB = AD and *BE* is an angle bisector of $\triangle ABC$. Which of the following must be true?

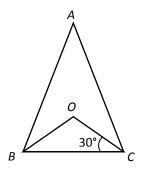
- **I.** *AB* // *DC*
- **II.** *AD* // *BC*

III. *BD* is an angle bisector of $\triangle ACD$.

- A. II only
- **B.** I and II only
- C. II and III only
- **D.** I, II and III

24. [16-17 Final Exam Q5]

Which of the following sets of line segments cannot form a triangle?

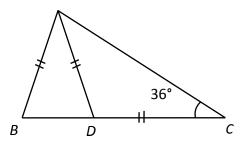

A. 1 cm, 3 cm, 5 cm

TB(3A) Ch. 3 Special Lines & Centres in a Triangle GHS Past Paper Question Bank – MC questions Page 6 of 7

- **B.** 3 cm, 4 cm, 5 cm
- C. 7 cm, 7 cm, 7 cm
- **D.** $\sqrt{2}$ cm, $\sqrt{2}$ cm, 2 cm

25. [16-17 Final Exam Q23]

In the figure, *OBC* is an isosceles triangle where OB = OC. *OB* and *OC* bisect $\angle ABC$ and $\angle ACB$ respectively, and $\angle BCO = 30^{\circ}$. Which of the following must be true?



- I. $\triangle ABC$ is an equilateral triangle.
- II. Angle bisector of $\angle BAC$ passes through O.
- III. Perpendicular bisector of *BC* coincides with median of $\triangle ABC$ from *A*.

А.	I and II only
В.	I and III only
С.	II and III only
D.	I, II and III

26. [17-18 Mid-year Exam Q7]

In the figure, AB = AD = CD and *BDC* is a straight line. Which of the following centres of $\triangle ABC$ lies on *AD*?

- A. In-centre
- B. Circumcentre
- C. Centroid
- **D.** Orthocentre

27. [17-18 Mid-year Exam Q15]

I is the in-centre of $\triangle ABC$. If $\angle ABC = 50^{\circ}$ and $\angle BCA = 100^{\circ}$, then $\angle BIC =$

- **A.** 70°.
- **B.** 75°.
- **C.** 105°.

D. 115°.

28. [17-18 Mid-year Exam Q17]

In the figure, *ABCDE* is a regular pentagon. $\triangle CFD$ is an equilateral triangle. Which of the following are true?

Ε

- $I. \quad CF^2 + FD^2 > CD^2$
- **II.** BC + ED > BE
- **III.** BC + DF > BF
- **A.** I and II only
- **B.** I and III only
- **C.** II and III only
- **D.** I, II and III

29. [17-18 Mid-year Exam Q19]

In $\triangle ABC$, $\angle A = 90^{\circ}$ and D is the mid-point of BC. Which of the following must be true?

D

Α

В٩

С

- I. A is the orthocentre of $\triangle ABC$.
- II. D is the circumcentre of $\triangle ABC$.
- III. $\triangle ACD$ is an isosceles triangle.
- A. I and II only
- **B.** I and III only
- C. II and III only
- **D.** I, II and III

~ End ~