TB(3A) Ch. 3 Special Lines & Centres in a Triangle

Conventional Questions

1. [13-14 Standardized Test 1]

In **Figure 1**, AB = AC and AB // CD.

- (a) If DC is an altitude of $\triangle ADE$, find $\angle DCB$. (3 marks)
- (b) If AD = DE, prove that DC is a perpendicular bisector of $\triangle ADE$. (2 marks)

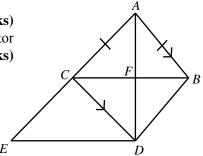


Figure 1

2. [13-14 Mid-year Exam Q2]

The lengths of two sides of an isosceles triangle are 3 cm and 6 cm. Mary claims that the possible perimeters of the triangle are 12 cm and 15 cm. Do you agree? Explain your answer. (3 marks)

3. [13-14 Mid-year Exam Q3]

In **Figure 1**, X is the incentre of $\triangle ABC$. $\angle CAX = 20^{\circ}$ and $\angle CBX = 30^{\circ}$. Find x and y. (4 marks)



Figure 1

4. [13-14 Mid-year Exam Q10]

In **Figure 4**, *BFCH* is a straight line. *D* and *G* are points on *AC* and *AB* respectively. *DF* and *CG* intersect at *E*. *DF* is a perpendicular bisector of $\triangle ABC$, $\angle GEF = x + 90^{\circ}$ and $\angle ADE = 2x + 90^{\circ}$ where $x > 0^{\circ}$.

(a) Prove that CE is an angle bisector of ΔDFC .

(2 marks)

(b) If $\angle ACH = 2\angle A$, prove that CG is a perpendicular bisector of $\triangle ABC$. (3 marks)

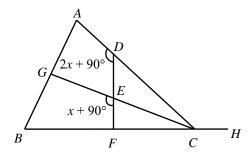


Figure 4

5. [13-14 Final Exam #11]

In **Figure 6**, AD and AB are altitudes of $\triangle ABC$. AD = 3 cm and

DC = 4 cm.

- (a) Prove that $\triangle ADC \sim \triangle BAC$. (2 marks)
- (b) Find the length of BC. (3 marks)
- (c) Write down the orthocentre of $\triangle ABC$. (1 mark)

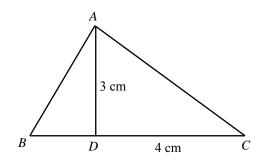


Figure 6

6. [14-15 Mid-year Exam #6]

In **Figure 2**, E and F are mid-points of AB and BC respectively. DE is perpendicular bisector of AC, and $ED /\!\!/ BC$. AGKF and EKC are straight lines.

(a) Prove that $\triangle AED \sim \triangle ABC$.

(2 marks)

- **(b)** Write down
 - (i) the orthocentre of $\triangle ABC$, (1 mark)
 - (ii) the centroid of $\triangle ABC$.
- (1 mark)
- (c) Prove that $AE + AD > \frac{BC}{2}$.
- (2 marks)

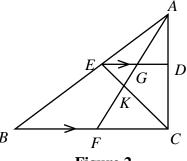


Figure 2

7. [14-15 Final Exam #10]

Figure 5(a) shows $\triangle ABC$ and D is a point on BC. It is given that AD is an angle bisector and an altitude of the triangle.

(a) Prove that $\triangle ADB \cong \triangle ADC$.

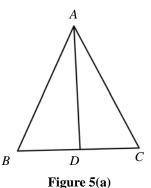
(2 marks)

- **(b)** If $AB = 4\sqrt{5}$ cm and BD = 4 cm,
 - (i) find AD.

(1 mark)

(ii) In **Figure 5(b)**, O is the circumcentre of $\triangle ABC$. Find OB. (Hint: O is equidistant from A, B and C.)

A



8. [15-16 Mid-year Exam #9]

In **Figure 5**, O is the centroid of $\triangle PQR$. MOR and NOP are straight lines. PM = 6 cm, QN = 8 cm and $\angle POR = 90^{\circ}$.

(a) Find the length of PR.

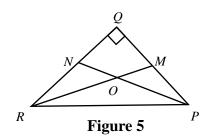
(3 marks)

(b) Write down the orthocentre of $\triangle MQR$.

(1 mark)

(c) Rachel claimed that MO = NO. Do you agree? Explain briefly.

(3 marks)



9. [15-16 Final Exam #13]

In **Figure 6**, AD is a perpendicular bisector of BC while BE is an intersect at F.

(a) Prove $\triangle ABD \cong \triangle ACD$.

(2 marks)

- (b) Charlotte claims that the incentre of $\triangle ABC$ lies on AD. Do you agree? Explain your answer. (1 mark)
- (c) Prove $AF \times FD = BF \times FE$.

(2 marks)

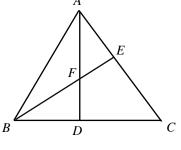


Figure 6

10. [16-17 Mid-year Exam #3]

The perimeter of an isosceles triangle is 28 cm and the length of one side is 6 cm. Janice claims that two different types of triangles can be formed. Do you agree? Explain your answer briefly.

(3 marks)

11. [16-17 Mid-year Exam #13]

Figure 5 shows a right-angled isosceles triangle $\triangle ABC$ with AB = BC = 10 cm. I is the incentre of $\triangle ABC$.

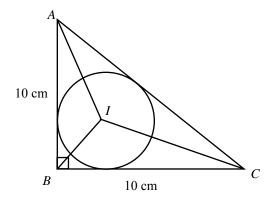


Figure 5

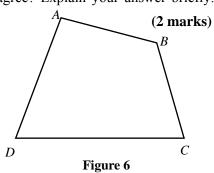
- (a) Find $\angle ICB$.
- **(b)** Write down the orthocentre of $\triangle ABC$.

(1 mark)

(c) It is given that the radius of the inscribed circle is r cm, find the value of r. (3 marks)

12. [16-17 Mid-year Exam #14]

In **Figure 6**, ABCD is a quadrilateral where DC > AD > AB > BC. Joseph claims that the perimeter of ABCD is less than the sum of lengths of its diagonals. Do you agree? Explain your answer briefly.



13. [16-17 Final Exam #18]

In **Figure 8**, *I* is the incentre of $\triangle ABC$, where $\angle BAC = a$, $\angle ABC = b$ and $\angle ACB = c$.

(a) Express $\angle BIC$ in terms of b and c.

(2 marks)

(b) Hence, show that $\angle BIC$ is an obtuse angle.

(2 marks)

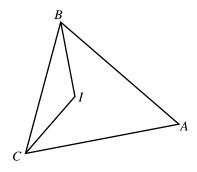


Figure 8

14. [17-18 Mid-year Exam #6]

In **Figure 2**, ABCD is a trapezium with AB // DC. H is a point inside ABCD such that AH and DH are angle bisectors of $\angle BAD$ and $\angle ADC$ respectively. Let $\angle BAH = x$, find $\angle AHD$.

(3 marks)

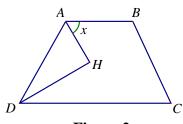


Figure 2

15. [17-18 Mid-year Exam #11]

In **Figure 6**, *ABCD* is a parallelogram. *B* is the midpoint of *AE*. *DE* cuts *BC* at *F*. *AF* and *BD* cuts at *G*.

~ End ~

- (a) Prove that G is the centroid of $\triangle ADE$. (2 marks)
- **(b)** A student claims that the centroid of $\triangle BCD$ lies on DF.

Do you agree? Explain your answer.

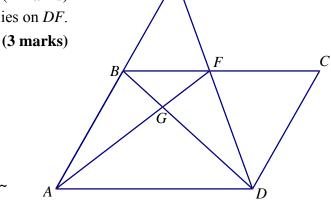


Figure 6