TB(2B) Ch. 9 Introduction to Deductive Geometry Conventional Questions

1. [13-14 Final Exam, #10]

In **Figure 3**, *D* is a point lying on *AC* such that $\angle ACB = \angle ABD$.

- (a) Prove that $\triangle ABC \sim \triangle ADB$. (2 marks)
- (b) Suppose AC = 25 cm, AB = 20 cm and BD = 12 cm. Prove that $\triangle ABD$ is a right-angled triangle. (3 marks)

2. [14-15 Final Exam #13]

In **Figure 4**, *M* and *N* are points on *AC* and *BC* respectively such that $AC \times CM = BC \times CN$.

- (a) Show that $\triangle ABC \sim \triangle NMC.$ (2 marks)
- (**b**) Using the result of (**a**),
 - (i) if $\angle ABC = \angle BAC$, show that $\triangle NMC$ is an isosceles triangle.(2 marks)
 - (ii) find $\angle ABC + \angle AMN.$ (2 marks)

3. [15-16 Final Exam #5] In Figure 1, ABCD and EFG are straight lines, and $\angle BFC = 45^{\circ}$. (a) Find x. (b) Prove that AD // EG. (c) marks) (c)

4. [16-17 Final Exam #13]

In Figure 5, *PQRS* is a quadrilateral. The diagonals *PR* and *SQ* intersect at *T*. It is given that TQ = TR and $\angle QPR = \angle RSQ$.

((a) Prove that $\Delta PQR \cong \Delta SRQ$. (b) Consider the triangles in Figure 5 .		(3 marks)	
(
	(i)	Name all the pairs of congruent triangles.	(2 marks)	
	(ii)	How many pairs of similar triangles are there?	(1 mark)	
5. [[*]	[17-18 Final Exam #10]			
Li Li	In Figure 3 , $AD = BD$, $\angle ABD = \angle DBC$ and $AB \parallel DE$.			
(:	(a) Prove that $\triangle BDE$ is an isosceles triangle.		(2 marks)	
()	(b) Prove that $\triangle ABC \sim \triangle BDC$.		(2 marks)	

(c) If AB = 12 and BD = 8, find the length of DC.

~ End ~

(2 marks)