TB(2B) Ch. 12 Trigonometric Ratios Conventional Questions

1. [13-14 S.2 Final Exam #6]

In **Figure 2**, *ABCD* is a quadrilateral and BC = 7 cm. $\angle ABC = \angle CDA = 90^\circ$, $\angle CAD = 50^\circ$ and $\angle BAC = 36^\circ$. Find the perimeter of the quadrilateral. (4 marks)

2. [14-15 S.2 Final Exam #4]

In **Figure 1**, $\triangle ABD$ and $\triangle BCD$ are two right-angled triangles. It is given that AB = 6 cm, BC = 3 cm, BD = x cm and $\angle ADB = 50^{\circ}$, find x and θ . (4 marks) (*Give the answers correct to 3 significant figures.*)

3. [15-16 S.2 Final Exam #6]

In Figure 2, *ABCD* is an isosceles trapezium with AB = DC. It is given that AD = 5 cm, BC = 11 cm and $\angle B = 45^{\circ}$. *E* is a point on *BC* such that $AE \perp BC$. Find the area of trapezium *ABCD*. (2 marks)

4. [15-16 S.2 Final Exam #12]

In **Figure 4**, a rectangular sheet of paper with AB = 10 cm, is folded so that point *C* touches the opposite side *AD* at *E*. It is given that $\angle FBC = 20^\circ$.

(a) Show that $\angle ABE = 50^{\circ}$.	(1 mark)
(b) Find <i>AE</i> .	(1 mark)
(c) Find <i>DE</i> .	(2 marks)

5. [15-16 S.2 Final Exam #14]

In **Figure 6**, $\triangle ABC$ is a right-angled triangle. Prove that $\sin^2 x + \cos^2 x = 1$. (2 marks)

6. [16-17 S.2 Final Exam #8]

Figure 2 shows two triangles *ABC* and *DEF*. Find θ and *DF*.

9.6 cm θ B 7.2 C D F Figure 2

(3 marks)

7. [17-18 S.2 Final Exam #6]

In Figure 1, O is a point on AB such that $OP \perp AB$. It is given that AP = 8 m, OP = 5 m, $\angle PBO = x$ and AB = 19 m.

(a) Find *OA*.

(b) Find *x*.

8. [17-18 S.2 Final Exam #12]

In Figure 4, $\triangle ABC$ is a right-angled triangle with $\angle B = 90^\circ$, $\angle C = 30^\circ$ and AC = h. *D* is a point on *BC* such that $\angle ADB = 50^\circ$.

(a) Find *AB* in terms of *h*.

(**b**) If DC = 8, find h.

(2 marks) (2 marks)

(2 marks)

(2 marks)

~ End ~