TB(2B) Ch. 10 Pyth. Thm & Irrational Numbers

Rational and Irrational Numbers

Multiple Choice Questions

1. [13-14 Standardized Test 2]

Which of the following is an irrational number?

A.
$$\frac{22}{7}$$

C.
$$\sqrt{4} + \sqrt{12}$$

D.
$$0.\dot{1}\dot{2} + 0.034\dot{5}$$

2. [13-14 Standardized Test 2]

If
$$\frac{1}{a} + \frac{1}{b} = \frac{3\sqrt{2}}{4}$$
 and $\frac{1}{a^2} + \frac{1}{b^2} = \frac{5}{8}$, then $ab =$

A.
$$\frac{1}{4}$$
. **B.** 1.

C. 4. **D.**
$$\frac{15\sqrt{2}}{32}$$
.

3. [13-14 Final Exam, #2]

Simplify
$$\sqrt{75} + \sqrt{27} - \sqrt{60} \div \sqrt{5}$$
.

A.
$$\sqrt{3}$$

B.
$$4\sqrt{3}$$

C.
$$6\sqrt{3}$$

D.
$$10\sqrt{3}$$

4. [13-14 Final Exam, #14]

If $a = k + \sqrt{2}$ and $b = k - \sqrt{2}$ where k is an integer, which of the following is/are rational?

II.
$$a+b$$

III.
$$a^2 + b^2$$

5. [13-14 S.6 Mock Exam #8]

Simplify
$$(a^2 - \sqrt{3}a + 1)(a^2 + \sqrt{3}a + 1)$$
.

A.
$$a^4 - a^2 + 1$$

B.
$$a^4 + a^2 + 1$$

C.
$$a^4 - 2a^2 - 2\sqrt{3}a - 1$$

D.
$$a^4 + \sqrt{3}a^2 - 2\sqrt{3}a + \sqrt{3}a + 1$$

6. [14-15 Standardized Test #2]

For a > b > c > 0, which of the following must be true?

A.
$$\sqrt{-a} = -\sqrt{a}$$

B.
$$\sqrt{\frac{a}{b}} = \sqrt{a} - \sqrt{b}$$

$$\mathbf{C.} \quad \sqrt{a+b} = \sqrt{a} + \sqrt{b}$$

D.
$$\sqrt{abc} = \sqrt{a} \cdot \sqrt{b} \cdot \sqrt{c}$$

7. [14-15 Standardized Test #10]

If
$$\frac{1}{a} - b = \sqrt{2}$$
 and $\frac{1}{a^2} + b^2 = \sqrt{5}$, then $\frac{b}{a} =$

A.
$$\frac{\sqrt{5}-2}{2}$$
. **B.** $\frac{\sqrt{5}+2}{2}$.

B.
$$\frac{\sqrt{5}+2}{2}$$

C.
$$\sqrt{5} - 2$$
. **D.** $\sqrt{5} + 2$.

D.
$$\sqrt{5} + 2$$

8. [14-15 Final Exam #6]

Which of the following is an irrational number?

B.
$$3^{-2}$$

C.
$$\left(\frac{\pi}{3}\right)^0$$

D.
$$\sqrt{242}$$

9. [15-16 Final Exam #1]

Which of the following is an irrational number?

A.
$$2\sqrt{5} - \sqrt{5}$$

C.
$$1 + \pi^0$$

D.
$$\sqrt{27} - 3\sqrt{3}$$

10. [15-16 Standardized Test #6]

$$\frac{2\sqrt{3}}{2-\sqrt{3}} =$$

A.
$$6+4\sqrt{3}$$
.

B.
$$9+4\sqrt{3}$$

B.
$$9+4\sqrt{3}$$
. **C.** $-5+\sqrt{3}$.

D.
$$-\frac{6+4\sqrt{3}}{5}$$
.

11. [15-16 Standardized Test #10]

$$\frac{1}{\sqrt{1} + \sqrt{2}} + \frac{1}{\sqrt{2} + \sqrt{3}} + \dots + \frac{1}{\sqrt{6} + \sqrt{7}} =$$

- **A.** $1-\sqrt{7}$.
- **B.** $\sqrt{7}-1$.
- **C.** $\frac{1}{28}$.
- **D.** $\frac{1}{\sqrt{3} + \sqrt{5} + \sqrt{7} + \sqrt{9} + \sqrt{11} + \sqrt{13}}$

12. [15-16 Standardized Test #3]

Which of the following expressions is an irrational number?

- A.
- $\mathbf{B.} \quad \sqrt{12} \times \sqrt{27}$
- **c.** 123.5678
- **D.** $(\sqrt{4} \sqrt{3})(\sqrt{3} + \sqrt{4})$

13. [17-18 Standardized Test 2 #10]

Which of the following statements is wrong?

- A. The product of two irrational numbers may be rational.
- В. The difference of two rational numbers must be rational.
- C. The sum of two irrational numbers may be rational.
- D. The difference of two rational numbers must be an integer.

14. [17-18 S2 Final Exam #4]

Which of the following is an irrational number?

- **A.** 1.89
- **B.** 3.141592654
- C. $\sqrt{17\frac{13}{36}}$
- **D.** $\frac{3}{\sqrt{75}}$