TB(2B) Ch. 10 Pyth. Thm & Irrational Numbers

Pythagoras' Theorem

Multiple Choice Questions

1. [13-14 S.2 S.Test 2 #5]

In the figure, *ABCD* and *CEFG* are squares. *DCE* and *BCG* are straight lines. If *DG* is 17 cm, find the sum of the areas of squares *ABCD* and *CEFG*.

- **A.** 64 cm^2
- **B.** 161 cm^2
- **C.** 225 cm^2
- **D.** 289 cm^2

2. [13-14 S.2 S.Test 2 #10]

Find the area of the following trapezium.

- **A.** $\frac{7\sqrt{11}}{2}$
- **B.** $6 + 2\sqrt{11}$
- **C.** $12 + 3\sqrt{11}$
- **D.** $12 \frac{3\sqrt{2}}{2}$

3. [13-14 Final Exam #11]

In the figure, ABCD is a square. What is the area of the pentagon ABCDE?

- **A.** 75 cm^2
- **B.** 100 cm^2
- **C.** 125 cm^2
- **D.** 150 cm^2

4. [14-15 S.2 S.Test #5]

In the figure, AB = 12 cm, BC = 5 cm, CD = 4 cm and DE = 5 cm. Find the perimeter of ΔACF .

- **A.** $28 + 2\sqrt{7}$ cm **B.** 36 cm
- **C.** $28 + \sqrt{85}$ cm **D.** 60 cm

5. [14-15 S.2 S.Test #8]

In the figure, $\triangle ABC \sim \triangle EAD$ and ACD is a straight line. AB = 4 cm, BC = 3 cm and CD = 1 cm. Find DE.

- A. $\sqrt{41}$ cm
- **B.** 9 cm
- C. $\sqrt{89}$ cm
- **D.** 10 cm

6. [14-15 S.6 S.Test #5]

The polar coordinates of the points A and B are $(r, 60^{\circ})$ and $(2r, 150^{\circ})$ respectively. If the distance AB is 25, find r.

- **A.** $3\sqrt{2}$
- **B.** $4\sqrt{3}$
- **C.** $5\sqrt{5}$
- **D.** $6\sqrt{7}$

7. [14-15 Final Exam #7]

In the figure, find *BC*.

- **A.** $3\sqrt{5}$
- **B.** $6\sqrt{5}$
- **C.** 9
- **D.** 45

8. [15-16 Final Exam #3]

In the figure, OABC is a sector with $\angle COA = 90^{\circ}$ and CA = 4 cm. Find the area of the shaded region.

 \Diamond

- **A.** $2(\pi 2) \text{ cm}^2$
- **B.** $4(\pi 1) \text{ cm}^2$
- C. $8(\pi 2) \text{cm}^2$
- **D.** $8(\pi 1)$ cm²

9. [15-16 Final Exam #18]

If the polar coordinates of a point P are $(2, 60^{\circ})$, then the rectangular coordinates of P are

- **A.** $(1, \sqrt{3}).$
- **B.** (1, 2).
- **C.** $(\sqrt{3}, 1)$.
- **D.** $(2, \sqrt{3}).$

10. [15-16 Final Exam #19]

In the figure, ABCD is a square. E is the mid-point of AB, G and F lies on AD and BC respectively. If AG = 1, BF = 2 and $\angle GEF = 90^{\circ}$, then GF =

- **A.** $\sqrt{3}$.
- **B.** $\sqrt{7}$.
- **C.** 3.
- **D.** 4.

11. [15-16 Final Exam #20]

In a right-angled triangle ABC, the hypotenuse AC = 13 cm. What is the largest possible area of $\triangle ABC$?

- **A.** 13 cm^2
- **B.** 30 cm^2
- C. 42.25 cm^2
- **D.** 84.5 cm^2

12. [15-16 S.Test #3]

In the figure, find the value of *x*, correct to 3 significant figures.

A. 4.47

https://www.study-together.com/edu/

Page 4 of 5

- **B.** 6.32
- **C.** 8.94
- **D.** 11.5

13. [15-16 S.Test #8]

In $\triangle ABC$, $AC^2 = AB^2 + BC^2$. It is given that $AC = \sqrt{2}AB$. Which of the following is not true?

- **A.** AC is the longest side of $\triangle ABC$.
- **B.** $\triangle ABC$ is a right-angled triangle.
- C. $\triangle ABC$ is an isosceles triangle.
- **D.** $BC = \sqrt{2}AC$.

14. [16-17 Final Exam #7]

In the figure, the length of the line segment joining \boldsymbol{A} and \boldsymbol{E} is

- **A.** 3.
- **B.** 4.
- **C.** 5.
- **D.** 6.

15. [17-18 F.2 S. Test 2 #5]

Peter wants to connect to the tip of a vertical pole to his position by a string. It is given that the height of the pole is 2 m and the distance between him and the foot of the pole is 5 m. Find the shortest length of the string.

- **A.** 7 m
- **B.** $\sqrt{29}$ m
- $\mathbf{C.} \quad \sqrt{21} \,\mathrm{m}$
- **D.** 3 m

16. [17-18 F.2 S. Test 2 #7]

In the figure, $\triangle ABC$ and $\triangle ABD$ are two right-angled triangles. It is given that AB = 7 cm, BC = 2 cm and AD = 6 cm. Find the area of the quadrilateral ACBD correct to 3 significant

figures.

- **A.** 21.3 cm^2
- **B.** 17.5 cm^2
- **C.** 8.87 cm^2
- **D.** 5.56 cm^2

17. [17-18 F.2 S. Test 2 #9]

The length of 4 rods are 123 cm, 45 cm, 36 cm and 27 cm. The area of the largest right-angled triangle formed by any three of the rods is

- **A.** 2767.5 cm^2 .
- **B.** 2214 cm^2 .
- **C.** 1660.2 cm^2 .
- **D.** 486 cm^2 .

~ End ~