TB(2B) Ch. 10 Pyth. Thm & Irrational Numbers

Pythagoras' Theorem

Conventional Questions

1. [11-12 S. Test 2]

In the figure, prove that $\triangle ABC$ is a right-angled triangle.

A $\sqrt{5}x$ C

2. [11-12 S. Test 2]

In the figure, ABCD is a rectangle. P is a point on AD such that $BP\perp PC$. If PD=3 cm and AB=4 cm, find the length of BC. (4 marks)

3. [12-13 S. Test 2]

In **Figure 2**, AB = 4AC, BD = 10 cm, $CD = 5\sqrt{21}$ cm, $\angle A = 90^{\circ}$ and the area of $\triangle ABC$ is 50 cm².

(a) Find the length of BC.

(4 marks)

(b) Prove that $\triangle BCD$ is a right-angled triangle.

(2 marks)

Figure 2

4. [12-13 Final Exam #7]

In **Figure 3**, AB // DE, AB = 2, $BC = \sqrt{x^2 - 4}$, CE = 3x, DE = 6, ACE and BCD are straight lines.

- (a) Prove that $\triangle ABC \sim \triangle EDC$.
- (3 marks)
- (b) Peter claims that both $\triangle ABC$ and $\triangle EDC$ are right-angled triangles. Do you agree? Explain your answer. (3 marks)

Figure 3

5. [13-14 St. Test #3]

In **Figure 2**, *BCD* is a straight line. $BC = \sqrt{3}$ cm , AB = 3 cm and $AC = 2\sqrt{3}$ cm.

- (a) Show that $\triangle ABC$ is a right-angled triangle. (2 marks)
- **(b)** If $AD = \sqrt{21}$ cm, find CD.

(3 marks)

Figure 2

6. [13-14 Final Exam #10]

In **Figure 3**, *D* is a point lying on *AC* such that $\angle ACB = \angle ABD$.

- (a) Prove that $\triangle ABC \sim \triangle ADB$.
- (2 marks)
- (b) Suppose AC = 25 cm, AB = 20 cm and BD = 12 cm. Prove that $\triangle ABD$ is a right-angled triangle. (3 marks)

Figure 3

7. [14-15 St. Test #2]

In **Figure 1**, AC = CB, $\angle ADC = 90^{\circ}$, CD = 7 cm and AD = 24 cm. Find the length of AB.

8. [14-15 St. Test #5]

In $\triangle ABC$, $AB = 2\sqrt{x}$ cm, $BC = \sqrt{x^2 + 4}$ cm and AC = (x+2) cm, where x > 0. Is $\triangle ABC$ a right-angled triangle? Explain your answer. (3 marks)

TB(2B) Ch.10-Pyth. Thm & Irrational No GHS Past Paper Question Bank - Conventional Questions Page 3 of 4

9. [14-15 S.6 Mock Exam #7]

In **Figure 1**, ABCD is a rectangle. E is a point on AB such that DE = CD. CF is the altitude of $\triangle CDE$.

- (a) Prove that $\triangle CEF \cong \triangle CEB$.
- **(b)** If CD = 10 cm and BE = 2 cm, find the area of $\triangle CDE$.

(6 marks)

10. [14-15 S.6 Mock Exam #8]

In a polar coordinate system, O is the pole. The polar coordinates of the points P and Q are $(8,80^\circ)$ and $(k,350^\circ)$ respectively, where k > 0. It is given that OP : PQ = 4:5.

- (a) Is $\triangle OPQ$ a right-angled triangle? Explain your answer.
- **(b)** Find the perimeter of $\triangle OPQ$.

(4 marks)

11. [14-15 Final #11]

In **Figure 3**, BC : AB = 2 : 1, AC = 10 and BC = x.

(a) Find *x*.

(2 marks)

(b) Find *BD*.

(2 marks)

12. [15-16 Final #10]

In **Figure 3**, $\angle ACB = \angle AED = 90^{\circ}$, AC = 3 cm, BC = 4 cm and AE = 1.5 cm.

(a) Prove that $\triangle ABC \sim \triangle ADE$.

- (2 marks)
- **(b)** Hence, find the area of $\triangle ABD$.
- (3 marks)

Figure 3

TB(2B) Ch.10-Pyth. Thm & Irrational No GHS Past Paper Question Bank – Conventional Questions Page 4 of 4 13. [15-16 Final #14]

In **Figure 6**, $\triangle ABC$ is a right-angled triangle. Prove that $\sin^2 x + \cos^2 x = 1$. (2 marks)

14. [15-16 St. Test #4]

A ship leaves a pier and sails east for 2 hours, then it sails south to a lighthouse for 3 hours. It is given that the speed of the ship is 50 km/h throughout the journey. Find the shortest distance between the pier and the lighthouse. (2 marks)

15. [15-16 St. Test #8]

In **Figure 2**, It is given that *AEDBC* is a trapezium. AB = 8, AC = 10, BC = 6 and $\angle EDC = 90^{\circ}$.

(a) Prove $\triangle ABC$ is a right angled triangle.

(2 marks)

(b) If area of trapezium *AEDBC*: area of $\triangle AEC = 8:3$, find *EC*.

(2 marks)

