TB(2B) Ch. 10 Angles Related to Triangles and Polygons Conventional Questions

1. [16-17 S.2 Final Exam #6]

In **Figure 1**, *ACDEF* is a regular pentagon while *ABC* is an isosceles triangle with AB = BC. If $\angle BCD = 136^\circ$, find $\angle ABC$. (4 marks)

2. [17-18 Standardized Test 2 #4]

In Figure 2, five straight lines form a pentagon *ABCDE*. It is given that $\angle TED = \angle CDS = \angle QBC$, $\angle BCD = 75^{\circ}$ and $\angle PAE = \angle EAD = 42^{\circ}$. Find $\angle ADE$. (3 marks)

3. [17-18 S.2 Final Exam #7]

In Figure 2, *B* and *E* are points on *AC* and *AD* respectively. It is given that $\angle ABE = \angle BAE$, AC = AD and $\angle ACD = 75^{\circ}$. Find *x* and *y*. (3 marks)

4. [18-19 S.2 S Test #5]

In Figure 1, AB // EC, AB = BC = 5 cm and $\angle ABC = 60^{\circ}$. D

is a point on EC such that AD // BC.

(a) Prove that $\triangle ABC$ is an equilateral triangle.

(**b**) Find $\angle ADE$.

Figure 2

TB(2B) Ch. 10 Angles Related to Triangles and Polygons GHS Past Paper Question Bank – Conventional Questions

5. [17-18 Final Exam #10]

In Figure 3 , $AD = BD$, $\angle ABD = \angle DBC$ and $AB \parallel DE$.	
(a) Prove that $\triangle BDE$ is an isosceles triangle.	(2 marks)

- (b) Prove that $\triangle ABC \sim \triangle BDC$. (2 marks)
- (c) If AB = 12 and BD = 8, find the length of DC.

6. [18-19 Final Exam #10]

In **Figure 3**, *AC* and *CB* are sides of a regular *n*-sided polygon. *AB* is a diagonal and $\angle BAC = 5^{\circ}$. *AC* is produced to *D* such that $\angle ABD = 90^{\circ}$.

(a) Find $\angle ABC$.(1 mark)(b) Find the value of n.(2 marks)(c) Prove that $\triangle BCD$ is an isosceles triangle.(2 marks)

7. [20-21 Final #19]

In Figure 8, *BDC* is a straight line, *AD* // *BE*, *AB* = *BE*, *AD* \perp *BC*, $\angle ACD = 55^{\circ}$ and $\angle AEB = 72.5^{\circ}$.

- (a) Find $\angle ABE$. (2 marks)
- (b) Find $\angle ABD$. (2 marks)
- (c) Prove that AC = BE. (2 marks)

A

С

Figure 3

Page 3 of 3

(2 marks)

D