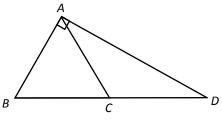

TB(2A) Ch. 5 Angles Related to Rectilinear Figures Conventional Questions

1. [12-13 Final Exam #3]

In Figure 1, $\angle CAB = \angle CDB$ and EB = EC. *AC* and *BD* intersect at *E*. Prove that (a) $\triangle ABE \cong \triangle DCE$; (3 marks)

(b) $\triangle OBC$ is an isosceles triangle. (4 marks)



2. [12-13 Final Exam #8]

If an interior angle of an *n*-sided regular polygon is larger than an exterior angle by 150° , find the value of *n*. (3 marks)

3. [13-14 Final Exam #5]

In **Figure 1**, $\triangle ABC$ is an equilateral triangle and $AB \perp AD$. *BCD* is a straight line. Show that $\triangle ACD$ is an isosceles triangle. (3 marks)

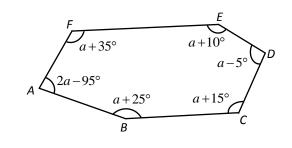

4. [13-14 S.1 Final Exam, Q7]

Figure 3 shows a hexagon *ABCDEF*.

(a) Find a.

(b) Is *FE* parallel to *BC*? Explain your answer. (3 marks)

5. [14-15 Standardized Test #3]

In Figure 2, ABCDEFGH is a regular octagon and ABIJK is a regular pentagon. Find

- (a) *x* and (2 marks)
- (b) *y*. (2 marks)

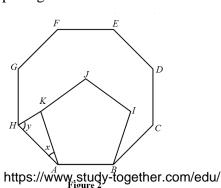
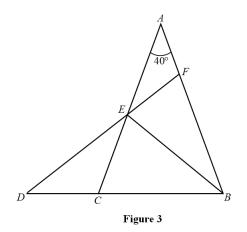



Figure 3

6. [14-15 Standardized Test #7]

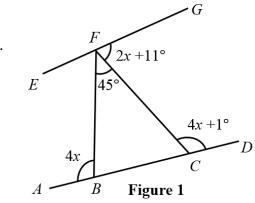
In Figure 3, AEC, AFB, DEF and BCD are straight lines. AB = AC, BC = BE, CD = CEand $\angle CAB = 40^\circ$. Prove that $\triangle EFB$ is an isosceles triangle. (3 marks)

7. [14-15 S.2 Final Exam #8]

In Figure 2, A is the mid-point of CF and ABDEF is a regular pentagon.

(a) Find $\angle BAF$. (b) Find $\angle C$. (2 marks) (2 marks) (2 marks) (2 marks) (2 marks) (2 marks)

(2 marks)


С

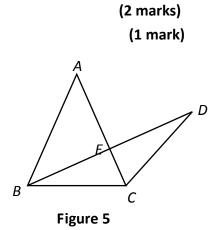
F

8. [15-16 S.2 Final Exam #5]

In Figure 1, ABCD and EFG are straight lines, and $\angle BFC = 45^{\circ}$. (a) Find x. (2 marks)

(b) Prove that AD // EG.

Page 3 of 3


(1 mark)

(2 marks)

9. [15-16 S.2 Final Exam #13]

In **Figure 5**, AB = AC, $\angle CDE = \frac{1}{2} \angle BAC$ and $\angle ABC = \angle ACD = y$. *BD* and *AC* intersect at *E*.

- (a) (i) Find $\angle ACB$ in terms of y.
 - (ii) Find $\angle CDE$ in terms of y.
- (b) (i) Prove that $\triangle BCD$ is an isosceles triangle.
 - (ii) Is $AC \perp DE$? Explain your answer.

~ End ~