
TB(1B) Ch. 10 Introduction to Coordinates Conventional Questions

1. [16-17 Standardized Test, #5]

In **Figure 1**, it is given that A (5, 60°) and B (6, 150°) are two points in the polar coordinate plane and O is the pole.

- (a) Plot $C(4, 240^{\circ})$ on the given polar coordinate plane. (1 mark)
- (b) Write down the length of AC. (1 mark)
- (c) Find the area of $\triangle ABC$.

2. [16-17 Standardized Test, #8]

The coordinates of A are (-5, -2). A is translated to the right by 12 units to B.

(a)	Write down the coordinates of <i>B</i> .	(1 mark)
-----	--	----------

- (b) It is given that the *y*-coordinate of *C* is 8.
 - (i) Find the area of $\triangle ABC$. (3 marks)
 - (ii) If C is translated downwards by n units, find the possible value(s) of n such that the area of triangle is decreased by 40%. (3 marks)

(1 mark)

3. [16-17 Final Exam, #13]

A (-4, -8) is a point on the rectangular coordinate plane. A is first rotated anti-clockwise about the origin through 90° and then translated 10 units to the left to B. B is then reflected about the x-axis to C.

- (a) Write down the coordinates of *B* and *C*.
- (b) L is a straight line parallel to the y-axis and cuts the x-axis at (k, 0), where k is a positive number. It is given that $\triangle ABC$ is reflected about the line L to $\triangle A'B'C'$. (1 mark)
 - (i) Write down the coordinates of A' in terms of k.

(ii) It is given that AA'C'C is a trapezium. If the area of AA'C'C is 144 sq. units, find the value of k. (2 marks)

(Hint: You can use **Figure 5** to help you in this question.)

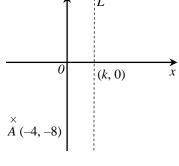
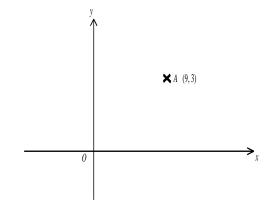



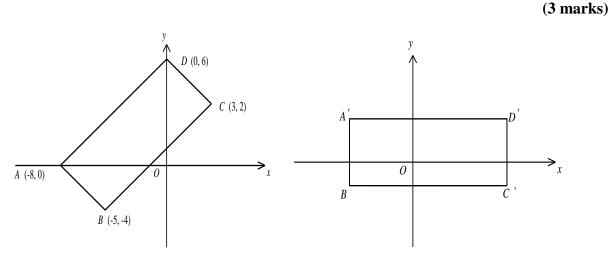
Figure 5

4. [17-18 Final Exam, #6]

In Figure 3, O is the origin and the coordinates of A are (9, 3). If B is formed by reflecting A about y-axis and C is formed by rotating A through 90° clockwise about O.

(a) Write down the coordinates of *B* and *C*.

(**b**) Find the area of $\triangle ABC$.


(2 marks) (2 marks)

(2 marks)

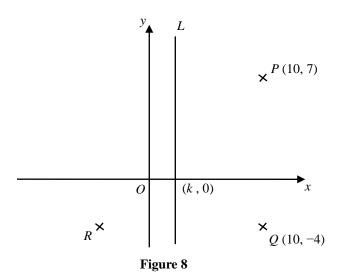
https://www.study-together.com/edu/

5. [17-18 Final Exam, #14]

(a) **Figure 10**(a) shows a rectangle *ABCD*. Prove that the area of the rectangle is 50 square units.

Figure 10(a)

Figure 10(b)

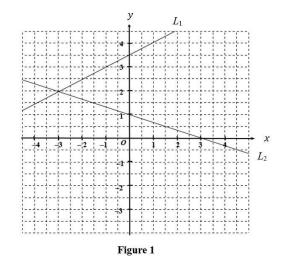

(b) The rectangle *ABCD* is rotated about *B* to a position *A'BC'D'* as shown in **Figure 10(b)** such that *BC'* is parallel to the *x*-axis. If A'B = 5 units, find the coordinates of *D'*.

(1 mark)

6. [18-19 Final Exam, #14]

In **Figure 8**, the coordinates of *P* and *Q* are (10, 7) and (10, -4) respectively. *L* is a line parallel to the *y*-axis and cuts the *x*-axis at (*k*, 0). *Q* is reflected about line *L* to *R*. It is given that the *x*-coordinate of *R* and the *y*-coordinate of *R* are equal.

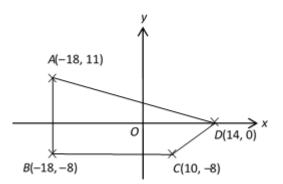
(a)	Write down the length of <i>PQ</i> .	(1 mark)
(b)	Find the value of k.	(2 marks)
<mark>(c)</mark>	R is translated upwards by 5 units and then rotated clockwise about the origin through 90° to S.	
	T is a point lying on the horizontal line passing through S such that the length	h of $ST = 6$ units.
	Melanie claims that the area of quadrilateral <i>PQRT</i> must always be smaller than 73 sq. units.	
	Do you agree with her? Explain your answer. (Level 3)	<mark>(3 marks)</mark>



https://www.study-together.com/edu/

7. [20-21 Final Exam, #7]

Refer to Figure 1,


- (a) Write down the coordinates of the point of intersection of the straight lines L_1 and L_2
- (b) If the point of intersection is rotated anti-clockwise about the origin through 90° to *P*, write down the coordinates of *P*.(1 mark)

8. [20-21 Final Exam, #17]

A(-18, 11), B(-18, -8), C(10, -8) and D(14, 0) are four points in a rectangular coordinate plane as shown in **Figure 7**.

- (a) Find the area of the quadrilateral *ABCD*. (3 marks)
- (b) If *D* is translated upward to point *E* such that *ABCE* becomes a trapezium, write down the coordinates of *E*. (1 mark)

(1 mark)

9. [20-21 Final Exam, #22]

The coordinates of A, B and C are (-5k, 5k), (-5k, -4k) and (2k, k) respectively where k is a positive number.

(a) Show that the area of $\triangle ABC$ is $31.5k^2$ sq. units. (2 marks)

(b) It is given that L is a line passing through the point (-4k, 0) and parallel to the y-axis. A and B is reflected with respect to L to E and F respectively. C is rotated clockwise about the origin through 90° to G. Someone claims that the area of $\triangle ABC$ is larger than the area of $\triangle EFG$ by 75%. Do you agree? Explain your answer.

<mark>(4 marks)</mark> Level 3

~ End ~