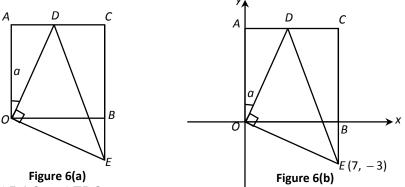
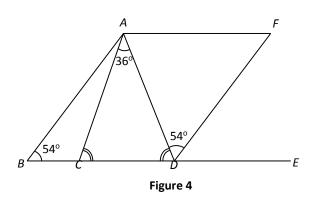

TB(1B) Ch. 9 Congruence and Similarity Conventional Questions


3. [14-15 Final Exam, Q4]

- In Figure 1, it is given that AB // DC, $\angle ADC = 40^{\circ}$, $\angle BAC = 65^{\circ}$ and $\angle ABC = 75^{\circ}$. AB = 4 cm and AC = 6 cm.
 - (a) Find $\angle DAC$ and $\angle ACD$.
 - **(b)** Prove that $\triangle ADC \sim \triangle BCA$.
 - (c) Find the length of DC.

4. [14-15 Final Exam, Q12]

In Figure 6(a), AOBC is a square. D is a point on AC and E is a point on CB produced such that $\angle DOE = 90^{\circ}$. Let $\angle AOD = a$.

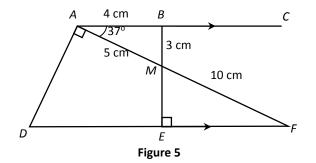

- (a) Prove that $\Delta DAO \cong \Delta EBO$.
- (b) A rectangular coordinate system is introduced to Figure 6(a) such that *O* is the origin and the coordinates of *E* are (7, -3) as shown in Figure 6(b). Find the area of $\triangle DOE$.

5. [15-16 Final Exam #9]

In **Figure 4**, *BCDE* is a straight line, $\angle ABC = 54^{\circ}$, $\angle CAD = 36^{\circ}$ and $\angle ADF = 54^{\circ}$. It is known that $\angle ACD = \angle ADC$.

- (a) Find $\angle ADC$. (1 mark)
- (b) Prove that AB //FD. (2 marks)
- (c) It is given that *AF* // *BE*. Show that

 $\Delta ABD \cong \Delta DFA.$ (2 marks)


(2 marks)

6. [15-16 Final Exam #10]

In Figure 5, ABC, AMF, DEF and BME are straight lines. AC // DF, AB = 4 cm, BM = 3 cm, AM = 5 cm, MF = 10 cm. It is given that $\angle DAF = 90^{\circ}$, $\angle BEF = 90^{\circ}$ and $\angle BAM = 37^{\circ}$

(a) Prove that $\triangle ABM \sim \triangle FEM$.	(2 marks)
(b) Name another triangle which is similar to the two triangles in (a).	(1 mark)

(c) Find the length of *DE*.

(3 marks)

7. [16-17 Final Exam #10]

In Figure 3, DEC is a straight line and AB // DC. It is given that $\angle BAE = 55^{\circ}$, $\angle CBE = 46^{\circ}$, $\angle BCE = 72^{\circ}$ and $\angle ADE = 62^{\circ}$.

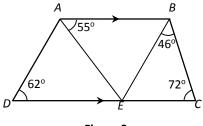
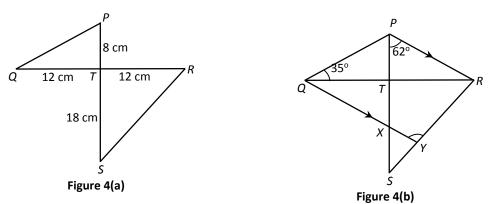



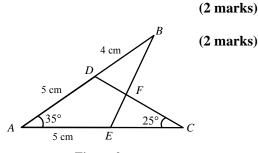
Figure 3

(a) Find $\angle ABE$ and $\angle AED$.	(2 marks)
(b) Prove that $\triangle ABE \cong \triangle EDA$.	(2 marks)
(c) Prove that $AD // BE$.	(2 marks)

8. [16-17 Final Exam #11]

In Figure 4(a), PS and QR intersect at T. It is given that PT = 8 cm, QT = TR = 12 cm and TS = 18 cm.

(a) Prove that $\Delta PQT \sim \Delta RST$.


(2 marks)

(b) Figure 4(b) is obtained by joining *PR* in Figure 4(a). *Y* is a point on *RS* so that *PR* // *QY*. *QY* cuts *TS* at *X*. It is given that $\angle PQT = 35^{\circ}$ and $\angle RPS = 62^{\circ}$. Find $\angle QYR$. (2 marks)

9. [17-18 Final Exam #2]

In **Figure 2**, *ADB*, *AEC*, *BFE* and *CFD* are straight lines. It is given that $\triangle ABE \cong \triangle ACD$, $\angle CAD = 35^\circ$, $\angle ACD = 25^\circ$, *BD* = 4 cm and *AE* = *AD* = 5 cm.

- (a) Find $\angle AEB$.
- **(b)** Prove that $\Delta DBF \cong \Delta ECF$.

Page 4 of 4

(4 marks)

10. [17-18 Final Exam #7]

In **Figure 4**, it is given that $\triangle ABC \sim \triangle QRP$. Find *x* and *y*.

11. [17-18 Final Exam #15]

In **Figure 11(a)**, it is given that $\triangle ABC$ and $\triangle PQR$ are similar triangles with AB = 8, AC = 12, PQ = 6, PR = 9 and $\angle A = \angle P$.

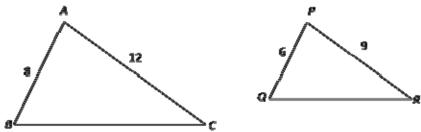
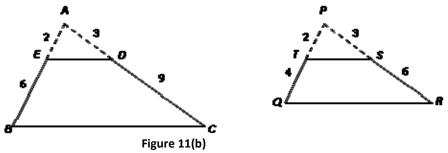



Figure 11(a)

In **Figure 11(b)**, the upper part of $\triangle ABC$ and $\triangle PQR$ are removed so that the two similar triangles become two trapeziums *BCDE* and *QRST*.

Velvet claims that the two trapeziums BCDE and QRST are similar. Do you agree? Explain briefly. (2 marks)

~ End ~