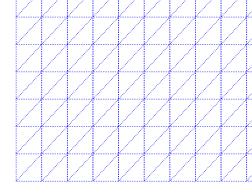
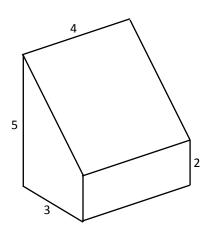
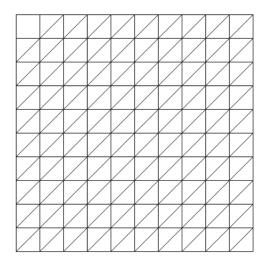

TB(1A) Ch. 6 Introduction to Geometry Conventional Questions

1. [13-14 Standardized Test 2 Q4]

Figure 3 shows the 2-D representation of a prism on the isometric grid paper. Draw the 2-D representation of the prism on the oblique grid. (2 marks)


Figure 3

2. [14-15 Standardized Test Q1]

Draw the 2-D representation of the following prism on the oblique grid.

(2 marks)

3. [14-15 Standardized Test Q4]

In **Figure 2**, *EAC*, *FAB* and *BDC* are straight lines. It is given that $\angle ABC = 6x$, $\angle ACB = 4x$, $\angle BAD = 5x$ and $\angle CAD = 3x$, find the value of $\angle EAF$. (2 marks)

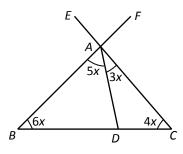
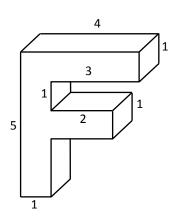
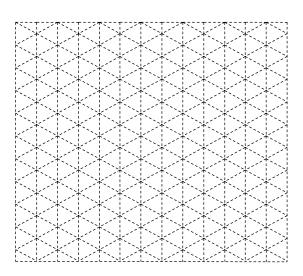
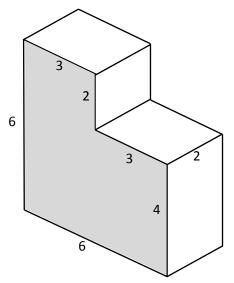
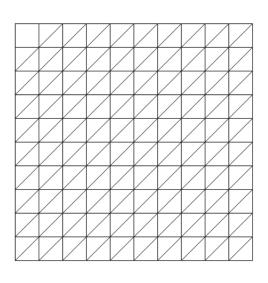




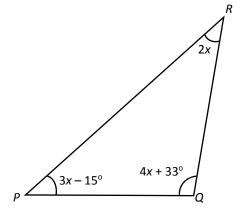
Figure 2

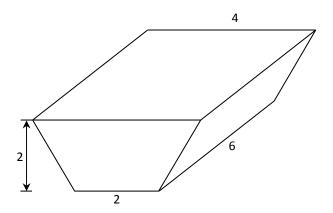
4. [14-15 Final Exam Q1]

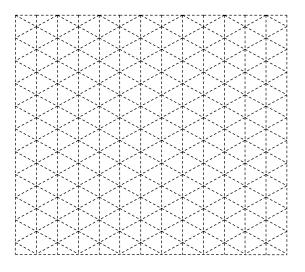

Draw the 2-D representation of the following solid on the isometric grid paper.



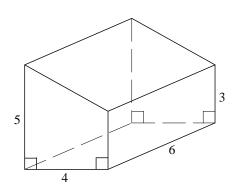
5. [15-16 Standardised Test Q1]

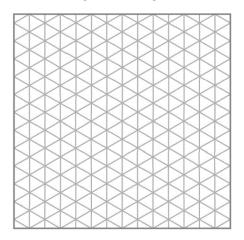

Figure 1 shows the 2-D representation of a prism. Draw the 2-D representation of the prism on the oblique grid with the grey surface facing you. (2 marks)


6. [15-16 Standardised Test Q5]


Figure 5 shows a triangle PQR. Find x. (2 marks)

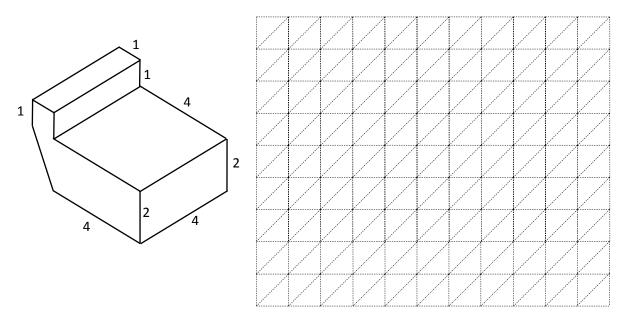
7. [15-16 Final Exam Q2]


Draw the 2-D representation of the following prism on the isometric grid paper. (2 marks)



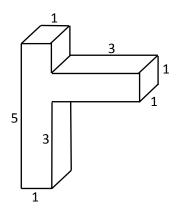
8. [16-17 Standardised Test Q3]

Draw the 2-D representation of the given solid on the following isometric grid. (2 marks)

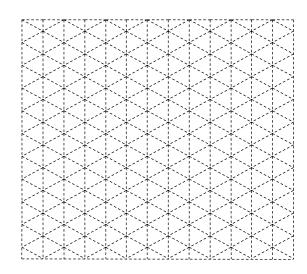


9. [16-17 Standardised Test Q4]

It is given that a polyhedron has n faces, 15 edges and 2(n-2) vertices. Find the value of n. (2 marks)


10. [16-17 Final Exam Q5]

Draw the 2-D representation of the given prism on the oblique grid provided. (2 marks)



11. [17-18 Mid-Year Exam #5]

Draw the 2-D representation of the following solid on the isometric grid paper. (2 marks)

12. [17-18 Mid-Year Exam #11]

In **Figure 1**, O is the centre of circle ACBD. OA, OB and OC are the radii and AOB is the diameter. It is given that BC = OC.

- (a) By considering the length of the sides, name the following triangles:
 - (i) $\triangle OAC$

(1 mark)

(ii) $\triangle OBC$

(1 mark)

(b) Karen claims that if BD = CD, OBDC is a concave polygon. Do you agree? Explain your answer. (1 mark)

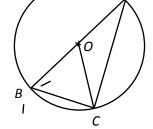
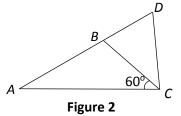


Figure 1

13. [17-18 Mid-Year Exam #12]


In **Figure 2**, ABD is a straight line. $\angle BCA = 60^{\circ}$ and $\angle ABC = 3 \angle BAC$.

(a) Find $\angle BAC$.

(2 marks)

(b) It is given that $\angle ADC = 60^{\circ} - \frac{x^{\circ}}{100}$, where x is positive.

Chloe claims that $\angle ACD$ is an obtuse angle. Do you agree? Explain your answer. (2 marks)

14. [17-18 Final Exam #4]

Figure 1 shows a right circular cone of base radius 3 cm and height 15 cm. A cross-section is obtained from cutting along a vertical plane passing through the centre of the base such that it is divided into two equal halves.

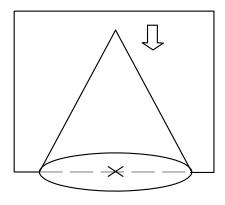


Figure 1

- (a) What is the type of figure of the cross-section if it is classified by its sides? (1 mark)
- (b) Find the area of the cross section. (1 mark)

~ End ~