St. Stephen's Girls' College Final Examination 2017-2018

Form 2 170 students

LC, WMC, LL, WYL, CYN

Total:

MATHEMATICS Paper I Time Allowed: 1 hour 30 minutes

	Question No.	Marks	Question No.	Marks
Name: No.:	1		10	
Class: Division:	2		11	
Instructions:	3		12	
Attempt ALL questions.	4		13	
• Write your answers in the spaces provided in this <i>Question-Answer Paper</i> .	5		14	
 ALL working must be clearly shown. 	6		15	
• The diagrams in this paper are not necessarily	7		16	
drawn to scale.	8		17	
This paper carries 100 marks.Unless otherwise specified, numerical answers	9		18	

should be either exact or correct to 3 significant figures.

If $(x + y) : 3 = (2y - x) : 4$, find $x : y$.	(3 marks)
(a) Make <i>a</i> the subject of the formula $\frac{5a-1}{2} = a + b(a+1)$.	(4 marl
 (a) Make <i>a</i> the subject of the formula ^{5a-1}/₂ = a + b(a + 1). (b) Find the value of <i>a</i> when b = 2. 	(4 marl (1 mar
 (a) Make <i>a</i> the subject of the formula ^{5a-1}/₂ = a + b(a + 1). (b) Find the value of <i>a</i> when b = 2. 	(4 marl (1 mar
(a) Make <i>a</i> the subject of the formula $\frac{5a-1}{2} = a + b(a+1)$. (b) Find the value of <i>a</i> when $b = 2$.	(4 marl (1 mar
 (a) Make <i>a</i> the subject of the formula 5a-1/2 = a + b(a + 1). (b) Find the value of <i>a</i> when b = 2. 	(4 marl (1 mar
(a) Make <i>a</i> the subject of the formula $\frac{5a-1}{2} = a + b(a+1)$. (b) Find the value of <i>a</i> when $b = 2$.	(4 marl (1 mar
 (a) Make <i>a</i> the subject of the formula 5a-1/2 = a + b(a + 1). (b) Find the value of <i>a</i> when b = 2. 	(4 marl (1 mar
(a) Make <i>a</i> the subject of the formula $\frac{5a-1}{2} = a + b(a+1)$. (b) Find the value of <i>a</i> when $b = 2$.	(4 mar) (1 ma
(a) Make <i>a</i> the subject of the formula $\frac{5a-1}{2} = a + b(a+1)$. (b) Find the value of <i>a</i> when $b = 2$.	(4 mar) (1 ma
(a) Make <i>a</i> the subject of the formula $\frac{5a-1}{2} = a + b(a+1)$. (b) Find the value of <i>a</i> when $b = 2$.	(4 mar) (1 ma
 (a) Make <i>a</i> the subject of the formula 5a-1/2 = a+b(a+1). (b) Find the value of <i>a</i> when b = 2. 	(4 mar) (1 ma
 (a) Make <i>a</i> the subject of the formula 5a-1/2 = a+b(a+1). (b) Find the value of <i>a</i> when b = 2. 	(4 mar) (1 ma

3. If *A* and *B* are constants such that $Ax(x - 5) - x^2 \equiv Bx(x + 6) - 93x$, find the values of *A* and *B*. (4 marks)

4.	In $\triangle ABC$, $BA = BC$ and $\angle A = 2 \angle B = x$. Find x. (5 marks)
5.	It is given that the sum of interior angles of an n -sided polygon is 9 times that of its exterior angles. Find the value of n . (4 marks)

Final Examination 2017-2018

6. The following tables show the recorded time, correct to the nearest second, for 100 athletes to cover a lap of a running track.

Cumulative frequency table:

Recorded time less than (s)	69.5	74.5	79.5	84.5	89.5	94.5	99.5
Number of athletes						94	100

Frequency distribution table:

Recorded time (s)	70 – 74	75 – 79	80 - 84	85 - 89	90 - 94	95 – 99
Class Mark (s)						
Number of athletes	8	20	24	32	10	6

- (a) Complete the cumulative frequency table and the frequency distribution table above.(2 marks)
- (b) According to the information in (a), draw the corresponding frequency polygon. (5 marks)

(c) To qualify for an international athletic competition, an athlete needs to have a lap time of less than 79.5 seconds. Find the percentage of athletes who are not qualified for the competition. (2 marks)

Final Examination 2017-2018

- 7. It is given that the graph of the equation ax + y 7 = 0passes through P(2, 1). (2 marks)
 - (a) Find the value of *a*.
 - (b) If the graph cuts the y-axis at B(0, b), find the value of *b*. (2 marks)
 - (c) l is a line parallel to the x-axis. l cuts the y-axis at A and passes through *P*. Find the area of $\triangle ABP$. (2 marks)

8.	(a)	Factorize $-27a - 3$.	(1 mark)
	(b)	Factorize $9ab + 18a + b + 2$.	(2 marks)
	(c)	Using the results of (a) and (b), factorize $9ab + 18a + b + 2 - 27a - 3$.	(3 marks)

9. In the figure, $\angle B = 90^\circ$, AD = 53 cm and CD = 28 cm. It is given that AB : BC = 3 : 4 and the perimeter of *ABCD* is 144 cm.

(a)	Find the length of <i>AB</i> .	(2 marks)
(b)	Is $\triangle ACD$ a right-angled triangle? Explain your answer.	(5 marks)
(c)	Find the area of <i>ABCD</i> .	(2 marks)

10. (a) Expand and simplify $\sqrt{a}\left(\sqrt{a} + \sqrt{12b}\right)$.

(2 marks)

(b) Write down a pair of values for *a* and *b* such that $\sqrt{a}\left(\sqrt{a} + \sqrt{12b}\right)$ is a rational number.

(1 mark)

11. Simplify $\frac{9}{\sqrt{5}} \times \sqrt{\frac{35}{18}}$ and rationalize the denominator of the result if necessary. (4 marks)

- 12. In the figure, $\triangle ABC$ and $\triangle ADC$ are two right-angled triangles. It is given that $\angle DAC = 22^{\circ}$, BC = 5 and CD = 2. Find
 - (a) the length of AC,
 - (b) $\angle ABC$,
 - (c) the length of AB.

(2 marks) (2 marks)

(2 marks)

7.2 Mathematics Paper I	Final Examinatio	n 2017-2018		
3. It is given that $\cos\theta : \sin\theta = 5$ (a) Find the values of $\cos\theta$, s	θ : 12. sin θ and tan θ .			(6 marks)
(b) By using the result in (a), t	find the value of $\frac{2 t}{2}$	$\frac{\operatorname{an}(90^\circ - \theta)}{\cos\theta}$	$-\frac{5}{\cos\left(90^\circ-\theta\right)}.$	(2 marks)

- 14. It is given that $0^{\circ} < \theta < 90^{\circ}$.
 - (a) Prove the identity $\tan(90^\circ \theta) + \tan \theta \equiv \frac{1}{\sin \theta \cos \theta}$. (3 marks)
 - (b) Is it possible to have a value of θ such that $\tan(90^\circ \theta) + \tan \theta = \frac{1}{2}$? Explain your answer.

(2 marks)

- 16. Carrot juice and apple juice are mixed to prepare Drink A and Drink B. The ratio of the volume of carrot juice to that of apple juice in Drink A is 3 : 2. The ratio of the volume of carrot juice to that of apple juice in Drink B is 3 : 7. Now, Drink A and Drink B are mixed in the ratio 1 : 2 by volume to prepare Drink C. Suppose the volume of Drink A in Drink C is x mL and the volume of Drink *B* in Drink *C* is 2x mL.
 - (a) Express the volume of carrot juice in Drink C in terms of x. (2 marks) (2 marks)
 - (b) Express the volume of apple juice in Drink *C* in terms of *x*.
 - (c) Hence, find the ratio of the volume of carrot juice to that of apple juice in Drink C.

(2 marks)

17. *ABCD* is a parallelogram. Let *E* be the mid-point of *AD*. If $\angle CBD = \angle DBE = x$, determine whether $\triangle ABD$ is a right-angled triangle. Explain your answer. (5 marks)

Final Examination 2017-2018

- 18. It is given that $3+3^2+3^3+\ldots+3^n=\frac{3}{2}(3^n-1)$, where *n* is a positive integer greater than 1.
 - (a) Find the value of $3 + 3^2 + 3^3 + \dots + 3^9$. (1 mark)
 - (b) It is given that $3+3^2+3^3+...+3^n = A(3+3^3+3^5+...+3^{n-1})$, where *n* can be any positive even number and *A* is a constant. Find the value of *A*.

$$\left[\text{Hint: } 3+3^2+3^3+\ldots+3^n=(3+3^3+3^5+\ldots+3^{n-1})+(3^2+3^4+3^6+\ldots+3^n)\right]$$
(2 marks)

(c) Hence, show that $3 + 3^3 + 3^5 + ... + 3^{n-1} = \frac{3}{8}(3^n - 1)$ if *n* is a positive even number. (3 marks)

