Mathematics

Time Allowed : 1 hour 15 minutes
Question/Answer Paper

Please read the following instructions very carefully.

1. This paper consists of TWO sections, A and B .
2. Write your class, class number, name and division in the spaces provided on this cover.

Class	
Class No.	
Name	
Division	

3. This paper carries 100 marks. Attempt ALL questions in this paper. Write your answers in the spaces provided in this Question/Answer Paper.
4. The diagrams in this paper are not necessarily drawn to scale.

For Markers' Use Only	
$1-24$.	(58)
25.	(3)
26.	(3)
27.	(6)
28.	(6)
29.	(6)
30.	(6)
31.	(6)
32.	(6)
TOTAL	(100)

Section A (58\%)

All rough work should be done on the rough work paper provided, but will not be marked.

		Answers	Marks
1.	Which of the following is/are rational number(s)? $\sqrt{5}, \quad \frac{2}{\sqrt{3}}, \quad \sqrt{\frac{3}{363}}, \quad 0.6, \quad \sqrt{4}-\sqrt{3}$	1.	2
2.	Simplify $\sqrt{50}-\sqrt{18}+\sqrt{8}$.	2.	2
3.	Find the value of x. (Express your answer in surd form if necessary)	3.	2
4.	Simplify $\quad 2 \sqrt{21} \times \sqrt{8} \div \sqrt{14}$.	4.	2
5.	Find the area of the isosceles triangle $A B C$.	5.	3
6.	Rationalize the denominator of $\frac{5}{\sqrt{10}}$.	6.	2
7.	Which of the following is/are right-angled triangle(s)? (Write down "Yes" or "No".)	7. $\triangle A B C$: $\triangle P Q R$: \qquad $\triangle X Y Z$: \qquad	$\begin{aligned} & 1 \\ & 1 \\ & 1 \end{aligned}$
8.	The figure shows a hexagon $A B C D E F$. Find the value of x.	8.	1
9.	The figure shows the exterior angles of a pentagon $A B C D E$. Find the value of x.	9.	1
			: $/ 18$

P. 2

10.			
12			

Section B (42\%)

25. The ratio of the number of basketballs to that of volleyballs and to that of footballs in a bag is $2: 3: 5$. If there are 9 volleyballs in the bag, find the number of footballs in the bag. (3 marks)
\qquad
26. The scale of a map is $1: 200000$. If the actual length of a highway is 26 km , find the length of that highway on the map in cm .
\qquad
\qquad \longrightarrow
\qquad
27. In the figure, $B D C \perp A D$.
(a) Find the lengths of $A D$ and $A B$.
(3 marks)
(b) Is $\angle B A C$ a right angle? Explain your answer.
(3 marks)

\qquad
P. 7
28. In the figure, $P S \perp Q S R$. The length of $Q R$ is 63 . Let $Q S=x$.

(a) (i) By considering $\triangle P S Q$, express $P S^{2}$ in terms of x.
(ii) By considering $\triangle P S R$, express $P S^{2}$ in terms of x.
(Hint: $\quad(a-b)^{2}=a^{2}-2 a b+b^{2}$)
(b) Using (a) and (b), find the length of $P S$.
\qquad
29. In the figure, $A B C D$ is a straight line. $\angle A E B=\angle B E C=\angle C E D$.
(a) Find $\angle A E B$.
(2 marks)
(b) Find $\angle B A E$.
(c) Find the length of $A D$.
(2 marks)
(2 marks)

\qquad
30. In the figure, $A B C D E F$ is a regular hexagon. $A E$ and $D F$ intersect at G.
(a) Find $\angle F D E$.
(3 marks)
(b) Write down the size of $\angle A E F$.
(1 mark)
(c) Find $\angle A G D$.
(2 marks)

31. The figure shows a square $A B C D$ of side $25 \mathrm{~cm} . E$ and F are points on $B C$ and $A B$ respectively. It is given that $C E: E B=3: 2$.
(a) Find $\tan \theta$.
(b) (i) Express $\angle B E F$ in terms of θ. (ii) Hence, find the length of $F B$.
(2 marks)
(4 marks)

\qquad
32. It is given that θ is an acute angle such that $\frac{1}{\tan \theta}=\frac{\sin 2 \theta}{\cos 2 \theta}$. Without using a calculator, find
(a) θ,
(b) the value of $\frac{2-\cos ^{2} \theta}{\sin \theta}$.
\qquad
--- End of Paper ---
P. 12
