整數指數定律
3.0.1 整數指數定律
- \(a^{m}\times a^{n}=a^{m+n}\)
- 例: \(b^{3}\times b^{4}=b^{3+4}=b^{7}\)
- \(\dfrac{a^{m}}{a^{n}}=a^{m-n}\)
- 例: \(\tfrac{b^{5}}{b^{3}}=b^{5-3}=b^{2}\)
- \((a^{m})^{n}=a^{m\times n}\)
- 例: \((a^{4})^{2}=a^{4\times 2}=a^{8}\)
- \((ab)^{m}=a^{m}b^{m}\)
- 例: \((xy)^{3}=x^{3}y^{3}\)
- \((\dfrac{a}{b})^{m}=\dfrac{a^{m}}{b^{m}}\)
- 例: \((\tfrac{x}{y})^{4}=\tfrac{x^{4}}{y^{4}}\)
- \(a^{0}=1\)
- 例: \(x^{0}=1\)
- \(a^{-n}=\dfrac{1}{a^n}\)
- 例: \(x^{-3}=\tfrac{1}{x^{3}}\)
3.0.2 定律解說
睇落 整數指數定律 好似好多定律要背,但其實只要明白當中道理,要記嘅主要係:
- \((a^{m}b^{n})^{p}=a^{m\times p}b^{n\times p}\)
- \(a^{0}=1\)
- \(a^{-n}=\dfrac{1}{a^{n}} ; \dfrac{1}{a^{-n}}=a^{n}\)
而“當中道理”係咁嘅:
- 你都知 \(y \times y=y^{2}\) 。而 y = y1,所以可以睇成個2就係由1+1計出嚟嘅。
- 咁即係話: 兩個變數項相乘時,指數相加
- 同一道理: 兩個變數項相除時,指數相減
- 另外,唔好以為 (a3)4 = a3+4 = a7
(a3)4 唔係兩個變數項相乘! 係a3自己乘自己4次!
(a3)4 = (a3) x (a3) x(a3) x(a3) (依家就係4個變數項相乘,所以指數相加)
= a3 + 3 + 3 + 3
= a3×4 = a12
再睇上面嗰3條式,要明點用都唔會太難。下面會再講多幾個例子。
\(\begin{align}
&(a^{3}b^{2})^{5}\\
&= 五個 (a^{3}b^{2})^{5} 自己乘埋 \\
&= (五個a^{3}乘埋) \times (五個b^{2}乘埋)\\
&= a^{3\times 5}b^{2\times 5} \\
&= b^{15}b^{10}
\end{align}\)
做法1 (直接約數):
\(\dfrac{x^{2}}{x^{2}} = 1\)
做法2 (運用指數定律):
\(\dfrac{x^{2}}{x^{2}} = x^{2-2} = x^{0} = 1\)
做法1:
\(\begin{align}
&\dfrac{a^{2}}{a^{-n}}\\
&=a^{2-(-n)} \\
&=a^{n+2}
\end{align}\)
做法2:
\(\begin{align}
&\dfrac{a^{2}}{a^{-n}}\\
&=a^{2}a^{n} \\
&=a^{n+2}
\end{align}\)
見到負數指數,就將變數項搬去份數中嘅另一層,並將指數變成正數。