You are currently viewing 問題: 平面幾何 (平行四邊形+相似三角形)

Consider △CPB and △BPM,

  • ∠CPM = ∠BPM = 90º (given)
  • ∠PMB = 180º – ∠BPM – ∠PBM = 90º –  ∠PBM
    ∠PBC = ∠MBC – ∠PMB = 90º –  ∠PBM
    ∴, ∠PMB = ∠PBC 

Therefore, △CPB ∼ △BPM (A.A.A. ∼).

Now, consider  △CPD and △BPN,

  • ∠DCP = ∠DCB – ∠PCB = 90º –  ∠PBM
    ∠NBP = ∠NBM – ∠PBM = 90º –  ∠PBM
    ∴, ∠DCP = ∠NBP
  • As MB = NB (given) and DC=BC (sides of square),
    BN/CD = MB/BC
    Also, PB/PC = MB/BC ( △CPB ∼ △BPM )
    So,  BN/CD = PB/PC

Therefore, △CPD ∼ △BPN (2 sides are proportional with equal inscribed angle).
As a result, ∠DPC = ∠NPB (properties of similar triangles).

∠CPB = 90º
⇒ ∠NPB + ∠CPN = 90º
⇒ ∠DPC + ∠CPN = 90º
⇒ ∠DPN = 90º
i.e. PD is perpendicular to PN.

 

發佈留言